Spelling suggestions: "subject:"dark age reionization first start"" "subject:"dark age reionization first stark""
1 |
Constraining C iii] Emission in a Sample of Five Luminous z = 5.7 GalaxiesDing, Jiani, Cai, Zheng, Fan, Xiaohui, P. Stark, Daniel, Bian, Fuyan, Jiang, Linhua, D. McGreer, Ian, E. Robertson, Brant, Siana, Brian 04 April 2017 (has links)
Recent observations have suggested that the C III] lambda 1907/1909 emission lines could be alternative diagnostic lines for galaxies in the reionization epoch. We use the F128N narrowband filter on the Hubble Space Telescope's (HST) Wide Field Camera 3 (WFC3) to search for C III] emission in a sample of five galaxies at z = 5.7 in the Subaru Deep Field and the Subaru/XMM-Newton Deep Field. Using the F128N narrowband imaging, together with the broadband imaging, we do not detect C III] emission for the five galaxies with JAB ranging from 24.10 to 27.00 in our sample. For the brightest galaxy J132416.13+274411.6 in our sample (z = 5.70, J(AB) = 24.10), which has a significantly higher signal to noise, we report a C III] flux of 3.34 +/- 1.81 x 10(-18) erg s(-1)cm(-2), which places a stringent 3 sigma upper limit of 5.43 x 10(-18) erg s(-1)cm(-2) on C III] flux and 6.57 angstrom on the C III] equivalent width. Using the stacked image, we put a 3 sigma upper limit on the mean C III] flux of 2.55 x 10(-18) erg s(-1) cm(-2) and a 3 sigma upper limit on the mean C III] equivalent width of 4.20 angstrom for this sample of galaxies at z = 5.70. Combined with strong C III] detection reported among high-z galaxies in the literature, our observations suggest that the equivalent widths of C III] from galaxies at z > 5.70 exhibit a wide range of distribution. Our strong limits on C III] emission could be used as a guide for future observations in the reionization epoch.
|
2 |
A Quasar Discovered at redshift 6.6 from Pan-STARRS1Tang, Ji-Jia, Goto, Tomotsugu, Ohyama, Youichi, Chen, Wen-Ping, Walter, Fabian, Venemans, Bram, Chambers, Kenneth C., Banados, Eduardo, Decarli, Roberto, Fan, Xiaohui, Farina, Emanuele, Mazzucchelli, Chiara, Kaiser, Nick, Magnier, Eugene A. 17 December 2016 (has links)
Luminous high-redshift quasars can be used to probe of the intergalactic medium in the early universe because their UV light is absorbed by the neutral hydrogen along the line of sight. They help us to measure the neutral hydrogen fraction of the high-z universe, shedding light on the end of reionization epoch. In this paper, we present a discovery of a new quasar (PSO J006.1240+39.2219) at redshift z = 6.61 +/- 0.02 from Panoramic Survey Telescope & Rapid Response System 1.Including this quasar, there are nine quasars above z > 6.5 up to date. The estimated continuum brightness is M-1450 = -25.96 +/- 0.08. PSO J006.1240+39.2219 has a strong Ly alpha emission compared with typical low-redshift quasars, but the measured near-zone region size is R-NZ = 3.2 +/- 1.1 proper megaparsecs, which is consistent with other quasars at z similar to 6.
|
3 |
ABSORPTION-LINE SPECTROSCOPY OF GRAVITATIONALLY LENSED GALAXIES: FURTHER CONSTRAINTS ON THE ESCAPE FRACTION OF IONIZING PHOTONS AT HIGH REDSHIFTLeethochawalit, Nicha, Jones, Tucker A., Ellis, Richard S., Stark, Daniel P., Zitrin, Adi 04 November 2016 (has links)
The fraction of ionizing photons escaping from high-redshift star-forming galaxies is a key obstacle in evaluating whether galaxies were the primary agents of cosmic reionization. We previously proposed using the covering fraction of low-ionization gas, measured via deep absorption-line spectroscopy, as a proxy. We now present a significant update, sampling seven gravitationally lensed sources at 4 < z < 5. We show that the absorbing gas in our sources is spatially inhomogeneous, with a median covering fraction of 66%. Correcting for reddening according to a dust-in-cloud model, this implies an estimated absolute escape fraction of similar or equal to 19% +/- 6%. With possible biases and uncertainties, collectively we find that the average escape fraction could be reduced to no less than 11%, excluding the effect of spatial variations. For one of our lensed sources, we have sufficient signal-tonoise ratio to demonstrate the presence of such spatial variations and scatter in its dependence on the Ly alpha equivalent width, consistent with recent simulations. If this source is typical, our lower limit to the escape fraction could be reduced by a further factor similar or equal to 2. Across our sample, we find a modest anticorrelation between the inferred escape fraction and the local star formation rate, consistent with a time delay between a burst and leaking Lyman continuum photons. Our analysis demonstrates considerable variations in the escape fraction, consistent with being governed by the small-scale behavior of star-forming regions, whose activities fluctuate over short timescales. This supports the suggestion that the escape fraction may increase toward the reionization era when star formation becomes more energetic and burst-like.
|
4 |
High Lyman Continuum Escape Fraction in a Lensed Young Compact Dwarf Galaxy at z=2.5Bian, Fuyan, Fan, Xiaohui, McGreer, Ian, Cai, Zheng, Jiang, Linhua 02 March 2017 (has links)
We present the HST WFC3/F275W UV imaging observations of A2218-Flanking, a lensed compact dwarf galaxy at redshift z approximate to 2.5. The stellar mass of A2218-Flanking is log(M-*/M-circle dot) = 9.14(-0.04)(+0.07) and SFR is 12.5(-7.4)(+3.8) M-circle dot yr(-1) after correcting the magnification. This galaxy has a young galaxy age of 127. Myr and a compact galaxy size of r(1/2) = 2.4 kpc. The HST UV imaging observations cover the rest-frame Lyman continuum (LyC) emission (similar to 800 angstrom) from A2218-Flanking. We firmly detect (14s) the LyC emission in A2218-Flanking in the F275W image. Together with the HST F606W images, we find that the absolute escape fraction of LyC is f(abs,esc) > 28%-57% based on the flux density ratio between 1700 and 800 angstrom (f(1700)/f(800)). The morphology of the LyC emission in the F275W images is extended and follows the morphology of the UV continuum morphology in the F606W images, suggesting that the f(800) is not from foreground contaminants. We find that the region with a high star formation rate surface density has a lower f(1700)/f(800) (higher f(800)/f(1700)) ratio than the diffused regions, suggesting that LyC photons are more likely to escape from the region with the intensive star-forming process. We compare the properties of galaxies with and without LyC detections and find that LyC photons are easier to escape in low-mass galaxies.
|
5 |
A Model Connecting Galaxy Masses, Star Formation Rates, and Dust Temperatures across Cosmic TimeImara, Nia, Loeb, Abraham, Johnson, Benjamin D., Conroy, Charlie, Behroozi, Peter 08 February 2018 (has links)
We investigate the evolution of dust content in galaxies from redshifts z = 0 to z = 9.5. Using empirically motivated prescriptions, we model galactic-scale properties-including halo mass, stellar mass, star formation rate, gas mass, and metallicity-to make predictions for the galactic evolution of dust mass and dust temperature in main-sequence galaxies. Our simple analytic model, which predicts that galaxies in the early universe had greater quantities of dust than their low-redshift counterparts, does a good job of reproducing observed trends between galaxy dust and stellar mass out to z approximate to 6. We find that for fixed galaxy stellar mass, the dust temperature increases from z = 0 to z = 6. Our model forecasts a population of low-mass, high-redshift galaxies with interstellar dust as hot as, or hotter than, their more massive counterparts; but this prediction needs to be constrained by observations. Finally, we make predictions for observing 1.1 mm flux density arising from interstellar dust emission with the Atacama Large Millimeter Array.
|
6 |
The Aurora radiation-hydrodynamical simulations of reionization: calibration and first resultsPawlik, Andreas H., Rahmati, Alireza, Schaye, Joop, Jeon, Myoungwon, Dalla Vecchia, Claudio 01 April 2017 (has links)
We introduce a new suite of radiation- hydrodynamical simulations of galaxy formation and reionization called Aurora. The Aurora simulations make use of a spatially adaptive radiative transfer technique that lets us accurately capture the small- scale structure in the gas at the resolution of the hydrodynamics, in cosmological volumes. In addition to ionizing radiation, Aurora includes galactic winds driven by star formation and the enrichment of the universe with metals synthesized in the stars. Our reference simulation uses 2 x 512(3) dark matter and gas particles in a box of size 25 h(-1) comoving Mpc with a force softening scale of at most 0.28 h(-1) kpc. It is accompanied by simulations in larger and smaller boxes and at higher and lower resolution, employing up to 2 x 1024(3) particles, to investigate numerical convergence. All simulations are calibrated to yield simulated star formation rate functions in close agreement with observational constraints at redshift z = 7 and to achieve reionization at z approximate to 8.3, which is consistent with the observed optical depth to reionization. We focus on the design and calibration of the simulations and present some first results. The median stellar metallicities of low- mass galaxies at z = 6 are consistent with the metallicities of dwarf galaxies in the Local Group, which are believed to have formed most of their stars at high redshifts. After reionization, the mean photoionization rate decreases systematically with increasing resolution. This coincides with a systematic increase in the abundance of neutral hydrogen absorbers in the intergalactic medium.
|
Page generated in 0.1434 seconds