• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 23
  • 21
  • 1
  • 1
  • Tagged with
  • 57
  • 16
  • 14
  • 10
  • 10
  • 9
  • 9
  • 9
  • 8
  • 8
  • 8
  • 8
  • 8
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Modul pro klasifikaci výsledků v rámci e-learningového systému / A Module for Classification of Results in an e-Learning System

Kočvara, Jakub January 2017 (has links)
In this thesis we try using machine learning techniques to predict final grade of a student in a learning management system on the basis of his behavior during the semester. The aim is to determine the optimal technology for the extraction, treatment and machine learning on data. The whole system would then be implemented as a module that we will be able to plug in the existing system.
52

Návrh informačního systému / Information System Design

Plaček, Marek January 2014 (has links)
The diploma thesis focuses on design of the information system for the department of medical transport service, which is part of the hospital. This thesis describes the theoretical knowledge necessary for analysis and custom design, is also concerned with the analysis of the current state of processes and information system. Last but not least, based on the analysis and the requirements lays down suggestions for improvement of the information system and design of optimal information system, that effectively supports the processes and enables its users to work more efficiently.
53

Exploiting big data in time series forecasting: A cross-sectional approach

Lehner, Wolfgang, Hartmann, Claudio, Hahmann, Martin, Rosenthal, Frank 12 January 2023 (has links)
Forecasting time series data is an integral component for management, planning and decision making. Following the Big Data trend, large amounts of time series data are available from many heterogeneous data sources in more and more applications domains. The highly dynamic and often fluctuating character of these domains in combination with the logistic problems of collecting such data from a variety of sources, imposes new challenges to forecasting. Traditional approaches heavily rely on extensive and complete historical data to build time series models and are thus no longer applicable if time series are short or, even more important, intermittent. In addition, large numbers of time series have to be forecasted on different aggregation levels with preferably low latency, while forecast accuracy should remain high. This is almost impossible, when keeping the traditional focus on creating one forecast model for each individual time series. In this paper we tackle these challenges by presenting a novel forecasting approach called cross-sectional forecasting. This method is especially designed for Big Data sets with a multitude of time series. Our approach breaks with existing concepts by creating only one model for a whole set of time series and requiring only a fraction of the available data to provide accurate forecasts. By utilizing available data from all time series of a data set, missing values can be compensated and accurate forecasting results can be calculated quickly on arbitrary aggregation levels.
54

A Deep-Learning Approach to Evaluating the Navigability of Off-Road Terrain from 3-D Imaging

Pech, Thomas Joel 30 August 2017 (has links)
No description available.
55

Porovnání přístupů ke generování umělých dat / Comparison of Approaches to Synthetic Data Generation

Šejvlová, Ludmila January 2017 (has links)
The diploma thesis deals with synthetic data, selected approaches to their generation together with a practical task of data generation. The goal of the thesis is to describe the selected approaches to data generation, capture their key advantages and disadvantages and compare the individual approaches to each other. The practical part of the thesis describes generation of synthetic data for teaching knowledge discovery using databases. The thesis includes a basic description of synthetic data and thoroughly explains the process of their generation. The approaches selected for further examination are random data generation, the statistical approach, data generation languages and the ReverseMiner tool. The thesis also describes the practical usage of synthetic data and the suitability of each approach for certain purposes. Within this thesis, educational data Hotel SD were created using the ReverseMiner tool. The data contain relations discoverable with SD (set-difference) GUHA-procedures.
56

Získávání znalostí z časoprostorových dat / Knowledge Discovery in Spatio-Temporal Data

Pešek, Martin January 2011 (has links)
This thesis deals with knowledge discovery in spatio-temporal data, which is currently a rapidly evolving area of research in information technology. First, it describes the general principles of knowledge discovery, then, after a brief introduction to mining in the temporal and spatial data, it focuses on the overview and description of existing methods for mining in spatio-temporal data. It focuses, in particular, on moving objects data in the form of trajectories with an emphasis on the methods for trajectory outlier detection. The next part of the thesis deals with the process of implementation of the trajectory outlier detection algorithm called TOP-EYE. In order to testing, validation and possibility of using this algorithm is designed and implemented an application for trajectory outlier detection. The algorithm is experimentally evaluated on two different data sets.
57

Automatické generování testovacích dat informačních systémů / Automatic Test Input Generation for Information Systems

Naňo, Andrej January 2021 (has links)
ISAGENis a tool for the automatic generation of structurally complex test inputs that imitate real communication in the context of modern information systems . Complex, typically tree-structured data currently represents the standard means of transmitting information between nodes in distributed information systems. Automatic generator ISAGENis founded on the methodology of data-driven testing and uses concrete data from the production environment as the primary characteristic and specification that guides the generation of new similar data for test cases satisfying given combinatorial adequacy criteria. The main contribution of this thesis is a comprehensive proposal of automated data generation techniques together with an implementation, which demonstrates their usage. The created solution enables testers to create more relevant testing data, representing production-like communication in information systems.

Page generated in 0.0572 seconds