• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 142
  • 18
  • 10
  • 8
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 1
  • 1
  • Tagged with
  • 204
  • 204
  • 204
  • 204
  • 44
  • 42
  • 41
  • 41
  • 40
  • 33
  • 24
  • 20
  • 20
  • 18
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

Enabling access for mobile devices to the web services resource framework

Unknown Date (has links)
The increasing availability of Web services and grid computing has made easier the access and reuse of different types of services. Web services provide network accessible interfaces to application functionality in a platform-independent manner. Developments in grid computing have led to the efficient distribution of computing resources and power through the use of stateful web services. At the same time, mobile devices as a platform of computing have become a ubiquitous, inexpensive, and powerful computing resource. Concepts such as cloud computing has pushed the trend towards using grid concepts in the internet domain and are ideally suited for internet-supported mobile devices. Currently, there are a few complete implementations that leverage mobile devices as a member of a grid or virtual organization. This thesis presents a framework that enables the use of mobile devices to access stateful Web services on a Globus-based grid. To illustrate the presented framework, a user-friendly mobile application has been created that utilizes the framework libraries do to demonstrate the various functionalities that are accessible from any mobile device that supports Java ME. / by Jan Christian Mangs. / Thesis (M.S.C.S.)--Florida Atlantic University, 2008. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2008. Mode of access: World Wide Web.
162

An Android approach to web services resource framework

Unknown Date (has links)
Web services have become increasingly important over the past decades. Versatility and platform independence are just some of their advantages. On the other hand, grid computing enables the efficient distribution of computing resources. Together, they provide a great source of computing power that can be particularly leveraged by mobile devices. Mobile computing enables information creation, processing, storage and communication without location constraints [63], not only improving business' operational efficiency [63] but actually changing a way of life. However, the convenience of anytime and anywhere communication is counterbalanced by small screens, limited computing power and battery life. Despite these limitations, mobile devices can extend grid functionality by bringing to the mix not only mobile access but sensing capabilities as well, gathering information from their surroundings through built in mechanisms, such as microphone, camera, GPS and even accelerometers. Prior work has already demonstrated the possibility of enabling Web Services Resource Framework (WSRF) access to grid resources from mobile device clients in the WSRF-ME project [39], where a representative Nokia S60 Smartphone application was created on a framework, which extends the JSR-172 functionality to achieve WSRF compliance. In light of today's mobile phone market diversity, this thesis extends the solution proposed by WSRF-ME to non-Java ME phones and to Android devices in particular. Android-based device numbers have grown considerably over the past couple of years despite its recent creation and reduced availability of mature software tools. / Therefore, Android's web service capabilities are studied and the original framework is analyzed in order to propose a modified framework version that achieves and documents WSRF compliant communication form Android for the first time. As a case study, an illustrative mobile File Explorer application is developed to match the mod framework' functionality to the original WSRF-ME's use case. An additional case study, the LIGO Monitor application, shows the viability of mobile web services for monitoring purposes in the Laser Interferometer Gravitational Observatory (LIGO) grid environment for the first time. The context that an actual application implementation such as LIGO provides, allows some of the challenges of real mobile grid clients to surface. As a result, the observations made during this development give way to the drafting of a preliminary set of guidelines for Globus service implementation suitable for Android consumption that still remain open for proof in future works. / by Adriana Garcia-Kunzel. / Thesis (M.S.C.S.)--Florida Atlantic University, 2010. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2010. Mode of access: World Wide Web.
163

Low complexity H.264 video encoder design using machine learning techniques

Unknown Date (has links)
H.264/AVC encoder complexity is mainly due to variable size in Intra and Inter frames. This makes H.264/AVC very difficult to implement, especially for real time applications and mobile devices. The current technological challenge is to conserve the compression capacity and quality that H.264 offers but reduce the encoding time and, therefore, the processing complexity. This thesis applies machine learning technique for video encoding mode decisions and investigates ways to improve the process of generating more general low complexity H.264/AVC video encoders. The proposed H.264 encoding method decreases the complexity in the mode decision inside the Inter frames. Results show, at least, a 150% average reduction of complexity and, at most, 0.6 average increases in PSNR for different kinds of videos and formats. / by Paula Carrillo. / Thesis (M.S.C.S.)--Florida Atlantic University, 2008. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2008. Mode of access: World Wide Web.
164

Exploiting Flow Relationships to Improve the Performance of Distributed Applications

Shang, Hao 06 April 2006 (has links)
Application performance continues to be an issue even with increased Internet bandwidth. There are many reasons for poor application performance including unpredictable network conditions, long round trip times, inadequate transmission mechanisms, or less than optimal application designs. In this work, we propose to exploit flow relationships as a general means to improve Internet application performance. We define a relationship to exist between two flows if the flows exhibit temporal proximity within the same scope, where a scope may either be between two hosts or between two clusters of hosts. Temporal proximity can either be in parallel or near-term sequential. As part of this work, we first observe that flow relationships are plentiful and they can be exploited to improve application performance. Second, we establish a framework on possible techniques to exploit flow relationships. In this framework, we summarize the improvements that can be brought by these techniques into several types and also use a taxonomy to break Internet applications into different categories based on their traffic characteristics and performance concerns. This approach allows us to investigate how a technique helps a group of applications rather than a particular one. Finally, we investigate several specific techniques under the framework and use them to illustrate how flow relationships are exploited to achieve a variety of improvements. We propose and evaluate a list of techniques including piggybacking related domain names, data piggybacking, enhanced TCP ACKs, packet aggregation, and critical packet piggybacking. We use them as examples to show how particular flow relationships can be used to improve applications in different ways such as reducing round trips, providing better quality of information, reducing the total number of packets, and avoiding timeouts. Results show that the technique of piggybacking related domain names can significantly reduce local cache misses and also reduce the same number of domain name messages. The data piggybacking technique can provide packet-efficient throughput in the reverse direction of a TCP connection without sacrificing forward throughput. The enhanced ACK approach provides more detailed and complete information about the state of the forward direction that could be used by a TCP implementation to obtain better throughput under different network conditions. Results for packet aggregation show only a marginal gain of packet savings due to the current traffic patterns. Finally, results for critical packet piggybacking demonstrate a big potential in using related flows to send duplicate copies to protect performance-critical packets from loss.
165

Managing Schema Change in an Heterogeneous Environment

Claypool, Kajal Tilak 17 June 2002 (has links)
"Change is inevitable even for persistent information. Effectively managing change of persistent information, which includes the specification, execution and the maintenance of any derived information, is critical and must be addressed by all database systems. Today, for every data model there exists a well-defined set of change primitives that can alter both the structure (the schema) and the data. Several proposals also exist for incrementally propagating a primitive change to any derived information (or view). However, existing support is lacking in two ways. First, change primitives as presented in literature are very limiting in terms of their capabilities allowing users to simply add or remove schema elements. More complex types of changes such the merging or splitting of schema elements are not supported in a principled manner. Second, algorithms for maintaining derived information often do not account for the potential heterogeneity between the source and the target. The goal of this dissertation is to provide solutions that address these two key issues. The first part of this dissertation addresses the challenge of expressing a rich complex set of changes. We propose the SERF (Schema Evolution through an Extensible, Re-usable and Flexible) framework that allows users to perform a wide range of complex user-defined schema transformations. Our approach combines existing schema evolution primitives using OQL (object query language) as the glue logic. Within the context of this work, we look at the different domains in which SERF can be applied, including web site management. To further enrich our framework, we also investigate the optimization and verification of SERF transformations. The second part of this dissertation addresses the problem of maintaining views in the face of source changes when the source and the view are not in the same data model. With today's increasing heterogeneity in information structure, it is critical that maintenance of views addresses the data model boundaries. However, view definitions that go across data models are limited to hard-coded algorithms, thereby making it difficult to develop general maintenance algorithms. We provide a two-step solution for this problem. We have developed a cross algebra, that defines views such that there is no restriction that forces the view and the source data models to be the same. We then define update propagation algorithms that can propagate changes from source to target irrespective of the exact translation and the data models. We validate our ideas by applying them to translation and change propagation between the XML and relational data models."
166

Displaying data structures for interactive debugging

Myers, Brad Allen January 1980 (has links)
Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1980. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND ENGINEERING. / Vita. / Bibliography: leaves 98-102. / by Brad Allen Myers. / M.S.
167

Efficient computational approach to identifying overlapping documents in large digital collections

Monostori, Krisztian, 1975- January 2002 (has links)
Abstract not available
168

Environment Analysis of Higher-Order Languages

Might, Matthew Brendon 29 June 2007 (has links)
Any analysis of higher-order languages must grapple with the tri-facetted nature of lambda. In one construct, the fundamental control, environment and data structures of a language meet and intertwine. With the control facet tamed nearly two decades ago, this work brings the environment facet to heel, defining the environment problem and developing its solution: environment analysis. Environment analysis allows a compiler to reason about the equivalence of environments, i.e., name-to-value mappings, that arise during a program's execution. In this dissertation, two different techniques-abstract counting and abstract frame strings-make this possible. A third technique, abstract garbage collection, makes both of these techniques more precise and, counter to intuition, often faster as well. An array of optimizations and even deeper analyses which depend upon environment analysis provide motivation for this work. In an abstract interpretation, a single abstract entity represents a set of concrete entities. When the entities under scrutiny are bindings-single name-to-value mappings, the atoms of environment-then determining when the equality of two abstract bindings infers the equality of their concrete counterparts is the crux of environment analysis. Abstract counting does this by tracking the size of represented sets, looking for singletons, in order to apply the following principle: If {x} = {y}, then x = y. Abstract frame strings enable environmental reasoning by statically tracking the possible stack change between the births of two environments; when this change is effectively empty, the environments are equivalent. Abstract garbage collection improves precision by intermittently removing unreachable environment structure during abstract interpretation.
169

Effective techniques for understanding and improving data structure usage

Jung, Changhee 20 September 2013 (has links)
Turing Award winner Niklaus Wirth famously noted, `Algorithms + Data Structures = Programs', and it follows that data structures should be carefully considered for effective application development. In fact, data structures are the main focus of program understanding, performance engineering, bug detection, and security enhancement, etc. Our research is aimed at providing effective techniques for analyzing and improving data structure usage in fundamentally new approaches: First, detecting data structures; identifying what data structures are used within an application is a critical step toward application understanding and performance engineering. Second, selecting efficient data structures; analyzing data structures' behavior can recognize improper use of data structures and suggest alternative data structures better suited for the current situation where the application runs. Third, detecting memory leaks for data structures; tracking data accesses with little overhead and their careful analysis can enable practical and accurate memory leak detection. Finally, offloading time-consuming data structure operations; By leveraging a dedicated helper thread that executes the operations on the behalf of the application thread, we can improve the overall performance of the application.
170

Designing multi-sensory displays for abstract data

Nesbitt, Keith January 2003 (has links)
Doctor of Philosophy / The rapid increase in available information has lead to many attempts to automatically locate patterns in large, abstract, multi-attributed information spaces. These techniques are often called data mining and have met with varying degrees of success. An alternative approach to automatic pattern detection is to keep the user in the exploration loop by developing displays for perceptual data mining. This approach allows a domain expert to search the data for useful relationships and can be effective when automated rules are hard to define. However, designing models of the abstract data and defining appropriate displays are critical tasks in building a useful system. Designing displays of abstract data is especially difficult when multi-sensory interaction is considered. New technology, such as Virtual Environments, enables such multi-sensory interaction. For example, interfaces can be designed that immerse the user in a 3D space and provide visual, auditory and haptic (tactile) feedback. It has been a goal of Virtual Environments to use multi-sensory interaction in an attempt to increase the human-to-computer bandwidth. This approach may assist the user to understand large information spaces and find patterns in them. However, while the motivation is simple enough, actually designing appropriate mappings between the abstract information and the human sensory channels is quite difficult. Designing intuitive multi-sensory displays of abstract data is complex and needs to carefully consider human perceptual capabilities, yet we interact with the real world everyday in a multi-sensory way. Metaphors can describe mappings between the natural world and an abstract information space. This thesis develops a division of the multi-sensory design space called the MS-Taxonomy. The MS-Taxonomy provides a concept map of the design space based on temporal, spatial and direct metaphors. The detailed concepts within the taxonomy allow for discussion of low level design issues. Furthermore the concepts abstract to higher levels, allowing general design issues to be compared and discussed across the different senses. The MS-Taxonomy provides a categorisation of multi-sensory design options. However, to design effective multi-sensory displays requires more than a thorough understanding of design options. It is also useful to have guidelines to follow, and a process to describe the design steps. This thesis uses the structure of the MS-Taxonomy to develop the MS-Guidelines and the MS-Process. The MS-Guidelines capture design recommendations and the problems associated with different design choices. The MS-Process integrates the MS-Guidelines into a methodology for developing and evaluating multi-sensory displays. A detailed case study is used to validate the MS-Taxonomy, the MS-Guidelines and the MS-Process. The case study explores the design of multi-sensory displays within a domain where users wish to explore abstract data for patterns. This area is called Technical Analysis and involves the interpretation of patterns in stock market data. Following the MS-Process and using the MS-Guidelines some new multi-sensory displays are designed for pattern detection in stock market data. The outcome from the case study includes some novel haptic-visual and auditory-visual designs that are prototyped and evaluated.

Page generated in 0.1477 seconds