• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Requirement-driven Design and Optimization of Data-Intensive Flows

Jovanovic, Petar 26 September 2016 (has links)
Data have become number one assets of today's business world. Thus, its exploitation and analysis attracted the attention of people from different fields and having different technical backgrounds. Data-intensive flows are central processes in today’s business intelligence (BI) systems, deploying different technologies to deliver data, from a multitude of data sources, in user-preferred and analysis-ready formats. However, designing and optimizing such data flows, to satisfy both users' information needs and agreed quality standards, have been known as a burdensome task, typically left to the manual efforts of a BI system designer. These tasks have become even more challenging for next generation BI systems, where data flows typically need to combine data from in-house transactional storages, and data coming from external sources, in a variety of formats (e.g. social media, governmental data, news feeds). Moreover, for making an impact to business outcomes, data flows are expected to answer unanticipated analytical needs of a broader set of business users' and deliver valuable information in near real-time (i.e. at the right time). These challenges largely indicate a need for boosting the automation of the design and optimization of data-intensive flows. This PhD thesis aims at providing automatable means for managing the lifecycle of data-intensive flows. The study primarily analyzes the remaining challenges to be solved in the field of data-intensive flows, by performing a survey of current literature, and envisioning an architecture for managing the lifecycle of data-intensive flows. Following the proposed architecture, we further focus on providing automatic techniques for covering different phases of the data-intensive flows' lifecycle. In particular, the thesis first proposes an approach (CoAl) for incremental design of data-intensive flows, by means of multi-flow consolidation. CoAl not only facilitates the maintenance of data flow designs in front of changing information needs, but also supports the multi-flow optimization of data-intensive flows, by maximizing their reuse. Next, in the data warehousing (DW) context, we propose a complementary method (ORE) for incremental design of the target DW schema, along with systematically tracing the evolution metadata, which can further facilitate the design of back-end data-intensive flows (i.e. ETL processes). The thesis then studies the problem of implementing data-intensive flows into deployable formats of different execution engines, and proposes the BabbleFlow system for translating logical data-intensive flows into executable formats, spanning single or multiple execution engines. Lastly, the thesis focuses on managing the execution of data-intensive flows on distributed data processing platforms, and to this end, proposes an algorithm (H-WorD) for supporting the scheduling of data-intensive flows by workload-driven redistribution of data in computing clusters. The overall outcome of this thesis an end-to-end platform for managing the lifecycle of data-intensive flows, called Quarry. The techniques proposed in this thesis, plugged to the Quarry platform, largely facilitate the manual efforts, and assist users of different technical skills in their analytical tasks. Finally, the results of this thesis largely contribute to the field of data-intensive flows in today's BI systems, and advocate for further attention by both academia and industry to the problems of design and optimization of data-intensive flows. / Doctorat en Sciences de l'ingénieur et technologie / info:eu-repo/semantics/nonPublished
2

Storage Format Selection and Optimization for Materialized Intermediate Results in Data-Intensive Flows

Munir, Rana Faisal 01 February 2021 (has links)
Modern organizations produce and collect large volumes of data, that need to be processed repeatedly and quickly for gaining business insights. For such processing, typically, Data-intensive Flows (DIFs) are deployed on distributed processing frameworks. The DIFs of different users have many computation overlaps (i.e., parts of the processing are duplicated), thus wasting computational resources and increasing the overall cost. The output of these computation overlaps (known as intermediate results) can be materialized for reuse, which helps in reducing the cost and saves computational resources if properly done. Furthermore, the way such outputs are materialized must be considered, as different storage layouts (i.e., horizontal, vertical, and hybrid) can be used to reduce the I/O cost. In this PhD work, we first propose a novel approach for automatically materializing the intermediate results of DIFs through a multi-objective optimization method, which can tackle multiple and conflicting quality metrics. Next, we study the behavior of different operators of DIFs that are the first to process the loaded materialized results. Based on this study, we devise a rule-based approach, that decides the storage layout for materialized results based on the subsequent operation types. Despite improving the cost in general, the heuristic rules do not consider the amount of data read while making the choice, which could lead to a wrong decision. Thus, we design a cost model that is capable of finding the right storage layout for every scenario. The cost model uses data and workload characteristics to estimate the I/O cost of a materialized intermediate results with different storage layouts and chooses the one which has minimum cost. The results show that storage layouts help to reduce the loading time of materialized results and overall, they improve the performance of DIFs. The thesis also focuses on the optimization of the configurable parameters of hybrid layouts. We propose ATUN-HL (Auto TUNing Hybrid Layouts), which based on the same cost model and given the workload and characteristics of data, finds the optimal values for configurable parameters in hybrid layouts (i.e., Parquet). Finally, the thesis also studies the impact of parallelism in DIFs and hybrid layouts. Our proposed cost model helps to devise an approach for fine-tuning the parallelism by deciding the number of tasks and machines to process the data. Thus, the cost model proposed in this thesis, enables in choosing the best possible storage layout for materialized intermediate results, tuning the configurable parameters of hybrid layouts, and estimating the number of tasks and machines for the execution of DIFs. / Moderne Unternehmen produzieren und sammeln große Datenmengen, die wiederholt und schnell verarbeitet werden müssen, um geschäftliche Erkenntnisse zu gewinnen. Für die Verarbeitung dieser Daten werden typischerweise Datenintensive Prozesse (DIFs) auf verteilten Systemen wie z.B. MapReduce bereitgestellt. Dabei ist festzustellen, dass die DIFs verschiedener Nutzer sich in großen Teilen überschneiden, wodurch viel Arbeit mehrfach geleistet, Ressourcen verschwendet und damit die Gesamtkosten erhöht werden. Um diesen Effekt entgegenzuwirken, können die Zwischenergebnisse der DIFs für spätere Wiederverwendungen materialisiert werden. Hierbei müssen vor allem die unterschiedlichen Speicherlayouts (horizontal, vertikal und hybrid) berücksichtigt werden. In dieser Doktorarbeit wird ein neuartiger Ansatz zur automatischen Materialisierung der Zwischenergebnisse von DIFs durch eine mehrkriterielle Optimierungsmethode vorgeschlagen, der in der Lage ist widersprüchliche Qualitätsmetriken zu behandeln. Des Weiteren wird untersucht die Wechselwirkung zwischen verschiedenen peratortypen und unterschiedlichen Speicherlayouts untersucht. Basierend auf dieser Untersuchung wird ein regelbasierter Ansatz vorgeschlagen, der das Speicherlayout für materialisierte Ergebnisse, basierend auf den nachfolgenden Operationstypen, festlegt. Obwohl sich die Gesamtkosten für die Ausführung der DIFs im Allgemeinen verbessern, ist der heuristische Ansatz nicht in der Lage die gelesene Datenmenge bei der Auswahl des Speicherlayouts zu berücksichtigen. Dies kann in einigen Fällen zu falschen Entscheidung führen. Aus diesem Grund wird ein Kostenmodell entwickelt, mit dem für jedes Szenario das richtige Speicherlayout gefunden werden kann. Das Kostenmodell schätzt anhand von Daten und Auslastungsmerkmalen die E/A-Kosten eines materialisierten Zwischenergebnisses mit unterschiedlichen Speicherlayouts und wählt das kostenminimale aus. Die Ergebnisse zeigen, dass Speicherlayouts die Ladezeit materialisierter Ergebnisse verkürzen und insgesamt die Leistung von DIFs verbessern. Die Arbeit befasst sich auch mit der Optimierung der konfigurierbaren Parameter von hybriden Layouts. Konkret wird der sogenannte ATUN-HL Ansatz (Auto TUNing Hybrid Layouts) entwickelt, der auf der Grundlage des gleichen Kostenmodells und unter Berücksichtigung der Auslastung und der Merkmale der Daten die optimalen Werte für konfigurierbare Parameter in Parquet, d.h. eine Implementierung von hybrider Layouts. Schließlich werden in dieser Arbeit auch die Auswirkungen von Parallelität in DIFs und hybriden Layouts untersucht. Dazu wird ein Ansatz entwickelt, der in der Lage ist die Anzahl der Aufgaben und dafür notwendigen Maschinen automatisch zu bestimmen. Zusammengefasst lässt sich festhalten, dass das in dieser Arbeit vorgeschlagene Kostenmodell es ermöglicht, das bestmögliche Speicherlayout für materialisierte Zwischenergebnisse zu ermitteln, die konfigurierbaren Parameter hybrider Layouts festzulegen und die Anzahl der Aufgaben und Maschinen für die Ausführung von DIFs zu schätzen.
3

Intermediate Results Materialization Selection and Format for Data-Intensive Flows

Munir, Rana Faisal, Nadal, Sergi, Romero, Oscar, Abelló, Alberto, Jovanovic, Petar, Thiele, Maik, Lehner, Wolfgang 14 June 2023 (has links)
Data-intensive flows deploy a variety of complex data transformations to build information pipelines from data sources to different end users. As data are processed, these workflows generate large intermediate results, typically pipelined from one operator to the following ones. Materializing intermediate results, shared among multiple flows, brings benefits not only in terms of performance but also in resource usage and consistency. Similar ideas have been proposed in the context of data warehouses, which are studied under the materialized view selection problem. With the rise of Big Data systems, new challenges emerge due to new quality metrics captured by service level agreements which must be taken into account. Moreover, the way such results are stored must be reconsidered, as different data layouts can be used to reduce the I/O cost. In this paper, we propose a novel approach for automatic selection of multi-objective materialization of intermediate results in data-intensive flows, which can tackle multiple and conflicting quality objectives. In addition, our approach chooses the optimal storage data format for selected materialized intermediate results based on subsequent access patterns. The experimental results show that our approach provides 40% better average speedup with respect to the current state-of-the-art, as well as an improvement on disk access time of 18% as compared to fixed format solutions.

Page generated in 0.0211 seconds