Spelling suggestions: "subject:"augmentering"" "subject:"datahantering""
1 |
Character Recognition in Natural Images Utilising TensorFlow / Teckenigenkänning i naturliga bilder med TensorFlowViklund, Alexander, Nimstad, Emma January 2017 (has links)
Convolutional Neural Networks (CNNs) are commonly used for character recognition. They achieve the lowest error rates for popular datasets such as SVHN and MNIST. Usage of CNN is lacking in research about character classification in natural images regarding the whole English alphabet. This thesis conducts an experiment where TensorFlow is used to construct a CNN that is trained and tested on the Chars74K dataset, with 15 images per class for training and 15 images per class for testing. This is done with the aim of achieving a higher accuracy than the non-CNN approach by de Campos et al. [1], that achieved 55.26%. The thesis explores data augmentation techniques for expanding the small training set and evaluates the result of applying rotation, stretching, translation and noise-adding. The result of this is that all of these methods apart from adding noise gives a positive effect on the accuracy of the network. Furthermore, the experiment shows that with a three layered convolutional neural network it is possible to create a character classifier that is as good as de Campos et al.'s. It is believed that even better results can be achieved if more experiments would be conducted on the parameters of the network and the augmentation. / Det är vanligt att använda konvolutionära artificiella neuronnät (CNN) för bildigenkänning, då de ger de minsta felmarginalerna på kända datamängder som SVHN och MNIST. Dock saknas det forskning om användning av CNN för klassificering av bokstäver i naturliga bilder när det gäller hela det engelska alfabetet. Detta arbete beskriver ett experiment där TensorFlow används för att bygga ett CNN som tränas och testas med bilder från Chars74K. 15 bilder per klass används för träning och 15 per klass för testning. Målet med detta är att uppnå högre noggrannhet än 55.26%, vilket är vad de campos et al. [1] uppnådde med en metod utan artificiella neuronnät. I rapporten utforskas olika tekniker för att artificiellt utvidga den lilla datamängden, och resultatet av att applicera rotation, utdragning, translation och bruspåslag utvärderas. Resultatet av det är att alla dessa metoder utom bruspåslag ger en positiv effekt på nätverkets noggrannhet. Vidare visar experimentet att med ett CNN med tre lager går det att skapa en bokstavsklassificerare som är lika bra som de Campos et al.s klassificering. Om fler experiment skulle genomföras på nätverkets och utvidgningens parametrar är det troligt att ännu bättre resultat kan uppnås.
|
2 |
AI-based Quality Inspection forShort-Series Production : Using synthetic dataset to perform instance segmentation forquality inspection / AI-baserad kvalitetsinspektion för kortserieproduktion : Användning av syntetiska dataset för att utföra instans segmentering förkvalitetsinspektionRussom, Simon Tsehaie January 2022 (has links)
Quality inspection is an essential part of almost any industrial production line. However, designing customized solutions for defect detection for every product can be costlyfor the production line. This is especially the case for short-series production, where theproduction time is limited. That is because collecting and manually annotating the training data takes time. Therefore, a possible method for defect detection using only synthetictraining data focused on geometrical defects is proposed in this thesis work. The methodis partially inspired by previous related work. The proposed method makes use of aninstance segmentation model and pose-estimator. However, this thesis work focuses onthe instance segmentation part while using a pre-trained pose-estimator for demonstrationpurposes. The synthetic data was automatically generated using different data augmentation techniques from a 3D model of a given object. Moreover, Mask R-CNN was primarilyused as the instance segmentation model and was compared with a rival model, HTC. Thetrials show promising results in developing a trainable general-purpose defect detectionpipeline using only synthetic data
|
Page generated in 0.0831 seconds