1 |
Träning av Artificiella Neuronnät med Motexempel Utvalda av ExpertpanelLarsson, Christer January 2001 (has links)
<p>Artificiella neuronnät (ANN), som tränas för att approximera ett problem, använder träningsdata från problemdomänen. Då denna mängd träningsdata kan vara ofullständig behövs det en analysmetod som visar hur nätverket uppför sig. En sådan analysmetod är invertering av nätverket. Invertering innebär att data som ger ett specifikt resultat i nätverket identifieras. Dessa resultat kan ge exempel som visar på brister eller felaktigheter i nätverket. Det här projektet använder ett ANN som ska klassificera handskrivna siffror. Resultatet från inverteringen visas för en "expertpanel". Panelen får avgöra vilka exempel som inte ska anses vara siffror. De utsorterade exemplen används sedan i en ny mängd träningsdata i syfte att förbättra nätverkets förmåga att klassificera de handskrivna siffrorna. Resultaten från experimentet visar att nätverkets klassificeringsförmåga inte skiljer sig nämnvärt från ett traditionellt tränat ANN. Dock kan det finnas egenheter hos nätverket som har förbättrats och som inte har identifierats i det här projektet.</p>
|
2 |
Artificiella neuronnät & biometri : -verifiering utav användare via tangentbordsskrivningEhlin, Eddie January 2007 (has links)
<p>Detta arbete handlar om beteendeinriktad biometri och artificiella neuronnät av typen feedforward och hur de tillsammans kan användas för att verifiera användare. Det har av tidigare arbete bekräftats att det är möjligt att verifiera användare, men tidigare resultat har däremot inte utfört tester med avseende på avvikelser i data (beteende) och dess inverkan på verifieringen. Det är detta som utgör det huvudsakliga målet för detta arbete, nämligen att undersöka hur avvikelser i data påverkar verifiering och utifrån det också undersöka neuronnätens noggrannhet vid verifiering.</p>
|
3 |
Träning av Artificiella Neuronnät med Motexempel Utvalda av ExpertpanelLarsson, Christer January 2001 (has links)
Artificiella neuronnät (ANN), som tränas för att approximera ett problem, använder träningsdata från problemdomänen. Då denna mängd träningsdata kan vara ofullständig behövs det en analysmetod som visar hur nätverket uppför sig. En sådan analysmetod är invertering av nätverket. Invertering innebär att data som ger ett specifikt resultat i nätverket identifieras. Dessa resultat kan ge exempel som visar på brister eller felaktigheter i nätverket. Det här projektet använder ett ANN som ska klassificera handskrivna siffror. Resultatet från inverteringen visas för en "expertpanel". Panelen får avgöra vilka exempel som inte ska anses vara siffror. De utsorterade exemplen används sedan i en ny mängd träningsdata i syfte att förbättra nätverkets förmåga att klassificera de handskrivna siffrorna. Resultaten från experimentet visar att nätverkets klassificeringsförmåga inte skiljer sig nämnvärt från ett traditionellt tränat ANN. Dock kan det finnas egenheter hos nätverket som har förbättrats och som inte har identifierats i det här projektet.
|
4 |
Feldiagnos för RM12 baserad på identifierade modeller / Fault Diagnosis of RM12 based on identified modelsViborg, Andreas January 2004 (has links)
<p>The jetengines of today are growing in complexity. Reliability for aircraft engines are of extreme importance, mainly due to safety reasons but also economical ones. This master thesis deals with faultdiagnosis in the turbine section of RM12, the engine used in Saab/BAe's Gripen. Three different faults which can occur in the turbine section was studied. These faults are: clogged fuel nozzle, hole in outlet guide vane and sensor fault. An analysis of the behaviour of the engine with these faults present was made. Based on this analysis an existing simulation model of RM12 was modified, so that these faults could be simulated. For the purpose of fault diagnosis two models were developed for two different engine parameters, one linear state space model and a neural network. These two models are then used to isolate the faults. The linear state space model is used to estimate the temperature right behind the engine turbines. This is a state space model with two states. This model estimates the temperature well at higher throttle levels, but has a temperature discrepancy of almost 100 K at lower throttle levels, the temperature right behind the turbines varies between 300 and 1200 K. A neural network was estimated to detect a decrease in turbine efficiency which is a phenomena which occurs when one or several of the engine's eighteen fuel nozzles are clogged. The neural network was able to detect this fault at some points. The diagnosis algorithm developed, based on the models mentioned above, is able to detect faults at most operating points, but fails to isolate the present fault at some points.</p>
|
5 |
Feldiagnos för RM12 baserad på identifierade modeller / Fault Diagnosis of RM12 based on identified modelsViborg, Andreas January 2004 (has links)
The jetengines of today are growing in complexity. Reliability for aircraft engines are of extreme importance, mainly due to safety reasons but also economical ones. This master thesis deals with faultdiagnosis in the turbine section of RM12, the engine used in Saab/BAe's Gripen. Three different faults which can occur in the turbine section was studied. These faults are: clogged fuel nozzle, hole in outlet guide vane and sensor fault. An analysis of the behaviour of the engine with these faults present was made. Based on this analysis an existing simulation model of RM12 was modified, so that these faults could be simulated. For the purpose of fault diagnosis two models were developed for two different engine parameters, one linear state space model and a neural network. These two models are then used to isolate the faults. The linear state space model is used to estimate the temperature right behind the engine turbines. This is a state space model with two states. This model estimates the temperature well at higher throttle levels, but has a temperature discrepancy of almost 100 K at lower throttle levels, the temperature right behind the turbines varies between 300 and 1200 K. A neural network was estimated to detect a decrease in turbine efficiency which is a phenomena which occurs when one or several of the engine's eighteen fuel nozzles are clogged. The neural network was able to detect this fault at some points. The diagnosis algorithm developed, based on the models mentioned above, is able to detect faults at most operating points, but fails to isolate the present fault at some points.
|
6 |
Evolution av modulära neuronnät för styrning av en mobil robotCarlsson, Johan January 1999 (has links)
<p>I dagens utveckling av robotkontrollers så finner vi olika synsätt på hur vi ska angripa problemen som en robot ställs inför. Det här arbetet koncentrerar sig på artificiella neurala nät (ANN) och evolution med genetiska algoritmer och en fokusering sker på en speciell arkitektur av ANN som Stefano Nolfi presenterat.</p><p>Rapporten kan ses som en fortsättning på Nolfis arbete och behandlar extensioner av fenomenet "spontan modularitet" som Nolfi beskriver. Det testproblem som används består i att utveckla ett kontrollsystem för en skräpsamlande robot. Detta arbete baseras på experiment runt detta problem med arkitekturer, vilka baseras på Nolfis spontana modularitet. Vi testar hur arkitekturerna påverkas av interna och återkopplade noder.</p><p>Resultaten visar på att en spontan modularitet inte tycks påverkas positivt av återkopplade eller interna noder.</p>
|
7 |
Simulering av medeldistanslöpning med artificiella neuronnät och belöningsbaserad inlärningBengtsson, Per January 2008 (has links)
<p>Syftet med arbetet är att simulera tävlingar på medeldistans mellan löpare med en strategi att vinna och undvika muskeltrötthet. Löparna ses som agenter vars strategi realiseras med ett artificiellt neuronnät (ANN) som med sensorer, avstånd till mål och agentens trötthet beräknar bidragande kraft och styrriktning. Agentens ANN tränas med en belöningsbaserad inlärning baserad på genetiska algoritmer och trötthetsalgoritmen är en uppskattning av hur mjölksyra påverkar muskeltrötthet.</p><p>Resultaten visar att av alla agenter som utvecklats för tävling mot klockan i s.k. time trial har alla haft samma strategi och hittat samma ideala kraft för att minimera tiden. Utvecklingen av agenter för simulation av flera agenter samtidigt har varit mer komplicerad eftersom agenterna påverkar varandra och agenternas strategi har varit olika. Multiagenterna blev också mindre robusta än singelagenterna men utvecklade beteenden som påminner om en realistisk tävling i medeldistanslöpning.</p>
|
8 |
Simulering av medeldistanslöpning med artificiella neuronnät och belöningsbaserad inlärningBengtsson, Per January 2008 (has links)
Syftet med arbetet är att simulera tävlingar på medeldistans mellan löpare med en strategi att vinna och undvika muskeltrötthet. Löparna ses som agenter vars strategi realiseras med ett artificiellt neuronnät (ANN) som med sensorer, avstånd till mål och agentens trötthet beräknar bidragande kraft och styrriktning. Agentens ANN tränas med en belöningsbaserad inlärning baserad på genetiska algoritmer och trötthetsalgoritmen är en uppskattning av hur mjölksyra påverkar muskeltrötthet. Resultaten visar att av alla agenter som utvecklats för tävling mot klockan i s.k. time trial har alla haft samma strategi och hittat samma ideala kraft för att minimera tiden. Utvecklingen av agenter för simulation av flera agenter samtidigt har varit mer komplicerad eftersom agenterna påverkar varandra och agenternas strategi har varit olika. Multiagenterna blev också mindre robusta än singelagenterna men utvecklade beteenden som påminner om en realistisk tävling i medeldistanslöpning.
|
9 |
Evolution av modulära neuronnät för styrning av en mobil robotCarlsson, Johan January 1999 (has links)
I dagens utveckling av robotkontrollers så finner vi olika synsätt på hur vi ska angripa problemen som en robot ställs inför. Det här arbetet koncentrerar sig på artificiella neurala nät (ANN) och evolution med genetiska algoritmer och en fokusering sker på en speciell arkitektur av ANN som Stefano Nolfi presenterat. Rapporten kan ses som en fortsättning på Nolfis arbete och behandlar extensioner av fenomenet "spontan modularitet" som Nolfi beskriver. Det testproblem som används består i att utveckla ett kontrollsystem för en skräpsamlande robot. Detta arbete baseras på experiment runt detta problem med arkitekturer, vilka baseras på Nolfis spontana modularitet. Vi testar hur arkitekturerna påverkas av interna och återkopplade noder. Resultaten visar på att en spontan modularitet inte tycks påverkas positivt av återkopplade eller interna noder.
|
10 |
Artificiella neuronnät & biometri : -verifiering utav användare via tangentbordsskrivningEhlin, Eddie January 2007 (has links)
Detta arbete handlar om beteendeinriktad biometri och artificiella neuronnät av typen feedforward och hur de tillsammans kan användas för att verifiera användare. Det har av tidigare arbete bekräftats att det är möjligt att verifiera användare, men tidigare resultat har däremot inte utfört tester med avseende på avvikelser i data (beteende) och dess inverkan på verifieringen. Det är detta som utgör det huvudsakliga målet för detta arbete, nämligen att undersöka hur avvikelser i data påverkar verifiering och utifrån det också undersöka neuronnätens noggrannhet vid verifiering.
|
Page generated in 0.0459 seconds