• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • Tagged with
  • 6
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mixture models for clustering and dimension reduction

Verbeek, Jakob Jozef, January 1900 (has links)
Proefschrift Universiteit van Amsterdam. / Bibliogr.: p. [149]-160. - Samenvatting in het Nederlands.
2

An electronic patient record for stroke: development, implementation and evaluation in practice

Meijden, Maria Johanna van der. January 1900 (has links)
Proefschrift Universiteit Maastricht. / Auteursnaam op omslag: Mirjan van der Meijden. Met bibliogr., lit. opg. - Met samenvatting in het Nederlands.
3

Least-squares variance component estimation : theory and GPS applications /

Amiri-Simkooei, AliReza, January 2007 (has links)
Originally presented as the author's thesis (doctoral)--Delft University of Technology. / Includes bibliographical references (p. [185]-194) and index.
4

Least-squares variance component estimation theory and GPS applications /

Amiri-Simkooei, AliReza, January 2007 (has links)
Originally presented as the author's thesis (doctoral)--Delft University of Technology. / Includes bibliographical references (p. [185]-194) and index.
5

Improving the efficiency of cost control in the building process by computerizing the cost information flow, with reference to Hong Kong

Wong, Chi-wah, Andrew, 黃志華 January 1983 (has links)
published_or_final_version / Architecture / Master / Master of Philosophy
6

Activity Recognition Using IoT and Machine Learning

Olnén, Johanna, Sommarlund, Julia January 2020 (has links)
Internet of Things devices, such as smartphonesand smartwatches, are currently becoming widely accessible andprogressively advanced. As the use of these devices steadilyincreases, so does the access to large amounts of sensory data.In this project, we developed a system that recognizes certainactivities by applying a linear classifier machine learning modelto a data set consisting of examples extracted from accelerometersensor data. We obtained the data set by collecting data from amobile device while performing commonplace everyday activities.These activities include walking, standing, driving, and ridingthe subway. The raw accelerometer data was then aggregatedinto data points, consisting of several informative features. Thecomplete data set was subsequently split into 80% training dataand 20% test data. A machine learning algorithm, in this case,a support vector machine, was presented with the training dataset and finally classified all test data with a precision higher than90%. Hence, meeting our set objective to build a service with acorrect classification score of over 90%.Human activity recognition has a large area of application,including improved health-related recommendations and a moreefficiently engineered system for public transportation. / Internet of Things-enheter, så som smarta telefoner och klockor, blir numera allt mer tillgängliga och tekniskt avancerade. Eftersom användningen av dessa smarta enheter stadigt ökar, ökar också tillgången till stora mängder data från sensorer i dessa enheter. I detta projekt utvecklade vi ett system som känner igen vissa aktiviteter genom att tillämpa en linjär klassificerande maskininlärningsmodell på en uppsättning data som extraherats från en accelerometer, en sensor i en smart telefon. Datauppsättningen skapades genom att samla in data från en smart telefon medan vi utförde vardagliga aktiviteter, så som promenader, stå stilla, köra bil och åka tunnelbana. Rå accelerometerdata samlades in och gjordes om till datavektorer innehållandes statistiska mått. Den totala datauppsättningen delades sedan upp i 80% träningsdata och 20% testdata. En maskininlärningsalgoritm, i detta fall en supportvektormaskin, introducerades med träningsdatan och klassificerade slutligen testdatan med en precision på över 90%. Därmed uppfylldes vårt uppsatta mål med att bygga en tjänst med en korrekt klassificering på över 90%. Igenkänning av mänsklig aktivitet har ett stort användningsområde, och kan bidra till förbättrade hälsorekommendationer och en mer effektiv kollektivtrafik. / Kandidatexjobb i elektroteknik 2020, KTH, Stockholm

Page generated in 0.0719 seconds