• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Fusion de données multi capteurs pour la détection et le suivi d'objets mobiles à partir d'un véhicule autonome / Multi sensor data fusion for detection and tracking of moving objects from a dynamic autonomous vehicle

Baig, Qadeer 29 February 2012 (has links)
La perception est un point clé pour le fonctionnement d'un véhicule autonome ou même pour un véhicule fournissant des fonctions d'assistance. Un véhicule observe le monde externe à l'aide de capteurs et construit un modèle interne de l'environnement extérieur. Il met à jour en continu ce modèle de l'environnement en utilisant les dernières données des capteurs. Dans ce cadre, la perception peut être divisée en deux étapes : la première partie, appelée SLAM (Simultaneous Localization And Mapping) s'intéresse à la construction d'une carte de l'environnement extérieur et à la localisation du véhicule hôte dans cette carte, et deuxième partie traite de la détection et du suivi des objets mobiles dans l'environnement (DATMO pour Detection And Tracking of Moving Objects). En utilisant des capteurs laser de grande précision, des résultats importants ont été obtenus par les chercheurs. Cependant, avec des capteurs laser de faible résolution et des données bruitées, le problème est toujours ouvert, en particulier le problème du DATMO. Dans cette thèse nous proposons d'utiliser la vision (mono ou stéréo) couplée à un capteur laser pour résoudre ce problème. La première contribution de cette thèse porte sur l'identification et le développement de trois niveaux de fusion. En fonction du niveau de traitement de l'information capteur avant le processus de fusion, nous les appelons "fusion bas niveau", "fusion au niveau de la détection" et "fusion au niveau du suivi". Pour la fusion bas niveau, nous avons utilisé les grilles d'occupations. Pour la fusion au niveau de la détection, les objets détectés par chaque capteur sont fusionnés pour avoir une liste d'objets fusionnés. La fusion au niveau du suivi requiert le suivi des objets pour chaque capteur et ensuite on réalise la fusion entre les listes d'objets suivis. La deuxième contribution de cette thèse est le développement d'une technique rapide pour trouver les bords de route à partir des données du laser et en utilisant cette information nous supprimons de nombreuses fausses alarmes. Nous avons en effet observé que beaucoup de fausses alarmes apparaissent sur le bord de la route. La troisième contribution de cette thèse est le développement d'une solution complète pour la perception avec un capteur laser et des caméras stéréo-vision et son intégration sur un démonstrateur du projet européen Intersafe-2. Ce projet s'intéresse à la sécurité aux intersections et vise à y réduire les blessures et les accidents mortels. Dans ce projet, nous avons travaillé en collaboration avec Volkswagen, l'Université Technique de Cluj-Napoca, en Roumanie et l'INRIA Paris pour fournir une solution complète de perception et d'évaluation des risques pour le démonstrateur de Volkswagen. / Perception is one of important steps for the functioning of an autonomous vehicle or even for a vehicle providing only driver assistance functions. Vehicle observes the external world using its sensors and builds an internal model of the outer environment configuration. It keeps on updating this internal model using latest sensor data. In this setting perception can be divided into two sub parts: first part, called SLAM(Simultaneous Localization And Mapping), is concerned with building an online map of the external environment and localizing the host vehicle in this map, and second part deals with finding moving objects in the environment and tracking them over time and is called DATMO(Detection And Tracking of Moving Objects). Using high resolution and accurate laser scanners successful efforts have been made by many researchers to solve these problems. However, with low resolution or noisy laser scanners solving these problems, especially DATMO, is still a challenge and there are either many false alarms, miss detections or both. In this thesis we propose that by using vision sensor (mono or stereo) along with laser sensor and by developing an effective fusion scheme on an appropriate level, these problems can be greatly reduced. The main contribution of this research is concerned with the identification of three fusion levels and development of fusion techniques for each level for SLAM and DATMO based perception architecture of autonomous vehicles. Depending on the amount of preprocessing required before fusion for each level, we call them low level, object detection level and track level fusion. For low level we propose to use grid based fusion technique and by giving appropriate weights (depending on the sensor properties) to each grid for each sensor a fused grid can be obtained giving better view of the external environment in some sense. For object detection level fusion, lists of objects detected for each sensor are fused to get a list of fused objects where fused objects have more information then their previous versions. We use a Bayesian fusion technique for this level. Track level fusion requires to track moving objects for each sensor separately and then do a fusion between tracks to get fused tracks. Fusion at this level helps remove false tracks. Second contribution of this research is the development of a fast technique of finding road borders from noisy laser data and then using these border information to remove false moving objects. Usually we have observed that many false moving objects appear near the road borders due to sensor noise. If they are not filtered out then they result into many false tracks close to vehicle making vehicle to apply breaks or to issue warning messages to the driver falsely. Third contribution is the development of a complete perception solution for lidar and stereo vision sensors and its intigration on a real vehicle demonstrator used for a European Union project (INTERSAFE-21). This project is concerned with the safety at intersections and aims at the reduction of injury and fatal accidents there. In this project we worked in collaboration with Volkswagen, Technical university of Cluj-Napoca Romania and INRIA Paris to provide a complete perception and risk assessment solution for this project.
2

3D Perception of Outdoor and Dynamic Environment using Laser Scanner / Perception 3D de l'environnement extérieur et dynamique utilisant Laser Scanner

Azim, Asma 17 December 2013 (has links)
Depuis des décennies, les chercheurs essaient de développer des systèmes intelligents pour les véhicules modernes, afin de rendre la conduite plus sûre et plus confortable. Ces systèmes peuvent conduire automatiquement le véhicule ou assister un conducteur en le prévenant et en l'assistant en cas de situations dangereuses. Contrairement aux conducteurs, ces systèmes n'ont pas de contraintes physiques ou psychologiques et font preuve d'une grande robustesse dans des conditions extrêmes. Un composant clé de ces systèmes est la fiabilité de la perception de l'environnement. Pour cela, les capteurs lasers sont très populaires et largement utilisés. Les capteurs laser 2D classiques ont des limites qui sont souvent compensées par l'ajout d'autres capteurs complémentaires comme des caméras ou des radars. Les avancées récentes dans le domaine des capteurs, telles que les capteurs laser 3D qui perçoivent l'environnement avec une grande résolution spatiale, ont montré qu'ils étaient une solution intéressante afin d'éviter l'utilisation de plusieurs capteurs. Bien qu'il y ait des méthodes bien connues pour la perception avec des capteurs laser 2D, les approches qui utilisent des capteurs lasers 3D sont relativement rares dans la littérature. De plus, la plupart d'entre elles utilisent plusieurs capteurs et réduisent le problème de la 3ème dimension en projetant les données 3D sur un plan et utilisent les méthodes classiques de perception 2D. Au contraire de ces approches, ce travail résout le problème en utilisant uniquement un capteur laser 3D et en utilisant les informations spatiales fournies par ce capteur. Notre première contribution est une extension des méthodes génériques de cartographie 3D fondée sur des grilles d'occupations optimisées pour résoudre le problème de cartographie et de localisation simultanée (SLAM en anglais). En utilisant des grilles d'occupations 3D, nous définissons une carte d'élévation pour la segmentation des données laser correspondant au sol. Pour corriger les erreurs de positionnement, nous utilisons une méthode incrémentale d'alignement des données laser. Le résultat forme la base pour le reste de notre travail qui constitue nos contributions les plus significatives. Dans la deuxième partie, nous nous focalisons sur la détection et le suivi des objets mobiles (DATMO en anglais). La deuxième contribution de ce travail est une méthode pour distinguer les objets dynamiques des objets statiques. L'approche proposée utilise une détection fondée sur le mouvement et sur des techniques de regroupement pour identifier les objets mobiles à partir de la grille d'occupations 3D. La méthode n'utilise pas de modèles spécifiques d'objets et permet donc la détection de tout type d'objets mobiles. Enfin, la troisième contribution est une méthode nouvelle pour classer les objets mobiles fondée sur une technique d'apprentissage supervisée. La contribution finale est une méthode pour suivre les objets mobiles en utilisant l'algorithme de Viterbi pour associer les nouvelles observations avec les objets présents dans l'environnement, Dans la troisième partie, l'approche propose est testée sur des jeux de données acquis à partir d'un capteur laser 3D monté sur le toit d'un véhicule qui se déplace dans différents types d'environnement incluant des environnements urbains, des autoroutes et des zones piétonnes. Les résultats obtenus montrent l'intérêt du système intelligent proposé pour la cartographie et la localisation simultanée ainsi que la détection et le suivi d'objets mobiles en environnement extérieur et dynamique en utilisant un capteur laser 3D. / With an anticipation to make driving experience safer and more convenient, over the decades, researchers have tried to develop intelligent systems for modern vehicles. The intended systems can either drive automatically or monitor a human driver and assist him in navigation by warning in case of a developing dangerous situation. Contrary to the human drivers, these systems are not constrained by many physical and psychological limitations and therefore prove more robust in extreme conditions. A key component of an intelligent vehicle system is the reliable perception of the environment. Laser range finders have been popular sensors which are widely used in this context. The classical 2D laser scanners have some limitations which are often compensated by the addition of other complementary sensors including cameras and radars. The recent advent of new sensors, such as 3D laser scanners which perceive the environment at a high spatial resolution, has proven to be an interesting addition to the arena. Although there are well-known methods for perception using 2D laser scanners, approaches using a 3D range scanner are relatively rare in literature. Most of those which exist either address the problem partially or augment the system with many other sensors. Surprisingly, many of those rely on reducing the dimensionality of the problem by projecting 3D data to 2D and using the well-established methods for 2D perception. In contrast to these approaches, this work addresses the problem of vehicle perception using a single 3D laser scanner. First contribution of this research is made by the extension of a generic 3D mapping framework based on an optimized occupancy grid representation to solve the problem of simultaneous localization and mapping (SLAM). Using the 3D occupancy grid, we introduce a variance-based elevation map for the segmentation of range measurements corresponding to the ground. To correct the vehicle location from odometry, we use a grid-based incremental scan matching method. The resulting SLAM framework forms a basis for rest of the contributions which constitute the major achievement of this work. After obtaining a good vehicle localization and a reliable map with ground segmentation, we focus on the detection and tracking of moving objects (DATMO). The second contribution of this thesis is the method for discriminating between the dynamic objects and the static environment. The presented approach uses motion-based detection and density-based clustering for segmenting the moving objects from 3D occupancy grid. It does not use object specific models but enables detecting arbitrary traffic participants. Third contribution is an innovative method for layered classification of the detected objects based on supervised learning technique which makes it easier to estimate their position with time. Final contribution is a method for tracking the detected objects by using Viterbi algorithm to associate the new observations with the existing objects in the environment. The proposed framework is verified with the datasets acquired from a laser scanner mounted on top of a vehicle moving in different environments including urban, highway and pedestrian-zone scenarios. The promising results thus obtained show the applicability of the proposed system for simultaneous localization and mapping with detection, classification and tracking of moving objects in dynamic outdoor environments using a single 3D laser scanner.
3

Real-Time Target Following Using an Unmanned Rotorcraft with a Laser Rangefinder

Pincock, Bryce Sanders 08 August 2012 (has links) (PDF)
Micro-unmanned aerial rotorcraft are quickly gaining acceptance as indoor platforms for performing stealth, surveillance, and rescue and reconnaissance missions. These rotorcraft are generally required to operate in cluttered, unknown, and dynamic GPS-denied environments, which present threats to the safe operation of the vehicle. To overcome these environmental challenges, we describe a system that is capable of localizing itself by producing accurate odometry estimates that can detect and track moving objects and avoid collisions with obstacles while following a moving target using a laser range finder. Our system has been implemented in the Simulink environment in MATLAB. Various simulations have shown our methods to work well, even in the presence of sensor noise and out-of-plane motion. Our system is capable of localizing itself within ±20 mm in North and East and ±0.5 degrees in ψ while detecting and tracking
4

Fusion de données multi capteurs pour la détection et le suivi d'objets mobiles à partir d'un véhicule autonome

Baig, Qadeer 29 February 2012 (has links) (PDF)
La perception est un point clé pour le fonctionnement d'un véhicule autonome ou même pour un véhicule fournissant des fonctions d'assistance. Un véhicule observe le monde externe à l'aide de capteurs et construit un modèle interne de l'environnement extérieur. Il met à jour en continu ce modèle de l'environnement en utilisant les dernières données des capteurs. Dans ce cadre, la perception peut être divisée en deux étapes : la première partie, appelée SLAM (Simultaneous Localization And Mapping) s'intéresse à la construction d'une carte de l'environnement extérieur et à la localisation du véhicule hôte dans cette carte, et deuxième partie traite de la détection et du suivi des objets mobiles dans l'environnement (DATMO pour Detection And Tracking of Moving Objects). En utilisant des capteurs laser de grande précision, des résultats importants ont été obtenus par les chercheurs. Cependant, avec des capteurs laser de faible résolution et des données bruitées, le problème est toujours ouvert, en particulier le problème du DATMO. Dans cette thèse nous proposons d'utiliser la vision (mono ou stéréo) couplée à un capteur laser pour résoudre ce problème. La première contribution de cette thèse porte sur l'identification et le développement de trois niveaux de fusion. En fonction du niveau de traitement de l'information capteur avant le processus de fusion, nous les appelons "fusion bas niveau", "fusion au niveau de la détection" et "fusion au niveau du suivi". Pour la fusion bas niveau, nous avons utilisé les grilles d'occupations. Pour la fusion au niveau de la détection, les objets détectés par chaque capteur sont fusionnés pour avoir une liste d'objets fusionnés. La fusion au niveau du suivi requiert le suivi des objets pour chaque capteur et ensuite on réalise la fusion entre les listes d'objets suivis. La deuxième contribution de cette thèse est le développement d'une technique rapide pour trouver les bords de route à partir des données du laser et en utilisant cette information nous supprimons de nombreuses fausses alarmes. Nous avons en effet observé que beaucoup de fausses alarmes apparaissent sur le bord de la route. La troisième contribution de cette thèse est le développement d'une solution complète pour la perception avec un capteur laser et des caméras stéréo-vision et son intégration sur un démonstrateur du projet européen Intersafe-2. Ce projet s'intéresse à la sécurité aux intersections et vise à y réduire les blessures et les accidents mortels. Dans ce projet, nous avons travaillé en collaboration avec Volkswagen, l'Université Technique de Cluj-Napoca, en Roumanie et l'INRIA Paris pour fournir une solution complète de perception et d'évaluation des risques pour le démonstrateur de Volkswagen.

Page generated in 0.0459 seconds