Spelling suggestions: "subject:"deenergisation"" "subject:"energisation""
1 |
Assessment of transformer energisation transients and their impacts on power systemsPeng, Jinsheng January 2013 (has links)
Transformers are essential components facilitating transmission and distribution of electric power. Energisation of transformers, however, can cause core operating at deep saturation region and thereby induce transient inrush currents of high magnitude and with rich harmonics. This can lead to undesirable effects including potential damage to the transformer itself, relay mal-operation, harmonic resonant overvoltages, and reduced power quality in the system (mainly in the form of voltage dips). This thesis investigates voltage dips caused by energising generator step-up (GSU) transformers and two types of generation connection are studied: one is a combine cycle gas turbine (CCGT) plant connected to a 400 kV transmission grid and the other is a large offshore wind farm connected to a 132 kV distribution grid. To carry out the investigation, detailed network models were developed in alternative transients program/electromagnetic transients program (ATP/EMTP) and validated with the help of field measurements. For the connection of generation in the transmission grid, deterministic assessment was conducted to comparatively analyse voltage dips caused by energising large GSU transformers under different energisation conditions and different network conditions; special attention was paid to the energisation cases involving sympathetic inrush between transformers by addressing its prolonging effects on voltage dips, with sensitivity studies further carried out to identify the key influential parameters. In addition, stochastic assessment was conducted by applying Monte Carlo method, which helps identify the dip frequency pattern and the likelihood of reaching the dip magnitude resulted from the commonly agreed worst case energisation condition; their sensitivities to the variation of circuit breaker closing time span, transformer core residual flux, system condition and the number of transformers being energized together were also investigated. Furthermore, possible cost-effective operational approaches to mitigate the voltage dips were explored and compared. For the connection of large offshore wind farm, voltage dips caused by energising wind turbine transformers under different scenarios were assessed; in particular, sympathetic inrush between wind turbine transformers were studied, and the energisation sequence resulting in less sympathetic inrush was deterministically identified and stochastically validated. The simulation results of deterministic studies indicate that, when carrying out energisation of a large GSU transformer in the transmission grid under the commonly agreed worst case energisation condition, the dip magnitude can reach 9.6% and the duration 2.7 seconds; moreover, when coupled with sympathetic inrush, the duration can be prolonged by 136%, lasting for 6.4 seconds. The sensitivity studies show that transformer core saturation inductance is the key parameter determining dip magnitude and transformer copper losses is the key parameter determining dip duration. Stochastic assessment of voltage dips shows that, out of 1000 stochastic dip events, less than 0.5% of the dips can reach the worst case dip magnitude and about 80% are of magnitudes less than 0.6 pu of the worst case dip magnitude; the dip frequency pattern is found to be insensitive to the circuit breaker closing time variation but can be considerably influenced by the residual flux distribution. In terms of mitigation measures, it was proven that, by adjusting tap changer position, applying static var compensator and even opening coupler circuit breaker in the substation, the degree of voltage dip especially the dip duration can be significantly reduced. Contrasting to those observed in the transmission grid, voltage dips resulted from energising wind turbine transformers in large offshore wind farms are of less concern; dip magnitudes are no more than 1% in the case of energising a stand-alone wind turbine transformer. However, sympathetic inrush between wind turbine transformers within one feeder was found to be significant and the energisation sequence resulting in less sympathetic inrush is to separately energise the wind turbine transformer from the one closest to the offshore platform to the one farthest away from the platform.
|
2 |
Mitigating risks associated with Lockout/Tagout (LOTO) of hazardous energy in Nigeria : a tracker approach / E.A. Aghenta.Aghenta, Emmanuel Aigbokhaibho January 2012 (has links)
The main objective of the study was to determine the risk(s) associated with lockout/tagout of hazardous energy and propose a new LOTO procedure which tracks the implementation of LOTO to mitigate against identified risks as a basis for promotion of safety. The study focuses on electrical personnel working in PHCN. Only electrical accident risks are examined, not other types of risk e.g. mechanical, chemical, and nuclear.
To gather material for this study, a questionnaire was distributed amongst electrical workers in PHCN and their supervisors were interviewed. Relevant literature and publications were studied as reference.
According to electrical personnel experience, electrocution, arc flash, arc blast, burns and lockout and tagout of the wrong electrical circuit are seen as the biggest electrical safety risk with regards to LOTO of hazardous energy.
The research reveals new information about electrical accident risks. This information is used to create a procedure for tracking LOTO of hazardous energy. The procedure can be utilized in the mitigation of electrical risks and promotion of / Thesis (MIng (Development and Management Engineering))--North-West University, Potchefstroom Campus, 2013.
|
3 |
Mitigating risks associated with Lockout/Tagout (LOTO) of hazardous energy in Nigeria : a tracker approach / E.A. Aghenta.Aghenta, Emmanuel Aigbokhaibho January 2012 (has links)
The main objective of the study was to determine the risk(s) associated with lockout/tagout of hazardous energy and propose a new LOTO procedure which tracks the implementation of LOTO to mitigate against identified risks as a basis for promotion of safety. The study focuses on electrical personnel working in PHCN. Only electrical accident risks are examined, not other types of risk e.g. mechanical, chemical, and nuclear.
To gather material for this study, a questionnaire was distributed amongst electrical workers in PHCN and their supervisors were interviewed. Relevant literature and publications were studied as reference.
According to electrical personnel experience, electrocution, arc flash, arc blast, burns and lockout and tagout of the wrong electrical circuit are seen as the biggest electrical safety risk with regards to LOTO of hazardous energy.
The research reveals new information about electrical accident risks. This information is used to create a procedure for tracking LOTO of hazardous energy. The procedure can be utilized in the mitigation of electrical risks and promotion of / Thesis (MIng (Development and Management Engineering))--North-West University, Potchefstroom Campus, 2013.
|
4 |
Transformer fault-recovery inrush currents in MMC-HVDC systems and mitigation strategiesVaheeshan, Jeganathan January 2017 (has links)
The UK Government has set an ambitious target to achieve 15% of final energy consumption from renewable sources by 2020. High Voltage Direct Current (HVDC) technology is an attractive solution for integrating offshore wind power farms farther from the coast. In the near future, more windfarms are likely to be connected to the UK grid using HVDC links. With the onset of this fairly new technology, new challenges are inevitable. This research is undertaken to help assist with these challenges by looking at possibilities of problems with respect to faster AC/DC interaction modes, especially, on the impact of inrush currents which occur during fault-recovery transients. In addition to that, possible mitigation strategies are also investigated. Initially, the relative merits of different transformer models are analysed with respect to inrush current transient studies. The most appropriate transformer model is selected and further validated using field measurement data. A detailed electro-magnetic-transient (EMT) model of a grid-connected MMC-HVDC system is prepared in PSCAD/EMTDC to capture the key dynamics of fault-recovery transformer inrush currents. It is shown that the transformer in an MMC system can evoke inrush currents during fault recovery, and cause transient interactions with the converter and the rest of the system, which should not be neglected. It is shown for the first time through a detailed dynamic analysis that if the current sensors of the inner-current control loops are placed at the converter-side of the transformer instead of the grid-side, the inrush currents will mainly flow from the grid and decay faster. This is suggested as a basic remedial action to protect the converter from inrush currents. Afterwards, analytical calculations of peak flux-linkage magnitude in each phase, following a voltage-sag recovery transient, are derived and verified. The effects of zero-sequence currents and fault resistance on the peak flux linkage magnitude are systematically explained. A zero-sequence-current suppression controller is also proposed. A detailed study is carried out to assess the key factors that affect the maximum peak flux-linkage and magnetisation-current magnitudes, especially with regard to fault specific factors such as fault inception angle, duration and fault-current attenuation. Subsequently, the relative merits of a prior-art inrush current mitigation strategy and its implementation challenges in a grid-connected MMC converter are analysed. It is shown that the feedforward based auxiliary flux-offset compensation scheme, as incorporated in the particular strategy, need to be modified with a feedback control technique, to alleviate the major drawbacks identified. Following that, eight different feedback based control schemes are devised, and a detailed dynamic and transient analysis is carried out to find the best control scheme. The relative merits of the identified control scheme and its implementation challenges in a MMC converter are also analysed. Finally, a detailed EMT model of an islanded MMC-HVDC system is implemented in PSCAD/EMTDC and the impacts of fault-recovery inrush currents are analysed. For that, initially, a MMC control scheme is devised in the synchronous reference frame and its controllers are systematically tuned. To obtain an improved performance, an equivalent control scheme is derived in the stationary reference frame with Proportional-Resonant controllers, and incorporated in the EMT model. Following that, two novel inrush current mitigation strategies are proposed, with the support of analytical equations, and verified.
|
Page generated in 0.0631 seconds