• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Fast and accurate image registration. Applications to on-board satellite imaging. / Recalage rapide et précis des images. Applications pour l'imagerie satellite

Rais, Martin 09 December 2016 (has links)
Cette thèse commence par une étude approfondie des méthodes d’estimation de décalage sous-pixeliques rapides. Une comparaison complète est effectuée prenant en compte problèmes d’estimation de décalage existant dans des applications réelles, à savoir, avec différentes conditions de SNR, différentes grandeurs de déplacement, la non préservation de la contrainte de luminosité constante, l’aliasing et, surtout, la limitation des ressources de calcul. Sur la base de cette étude, en collaboration avec le CNES (l’agence spatiale française), deux problèmes qui sont cruciaux pour l’optique numérique des satellites d’observation de la terre sont analysés. Nous étudions d’abord le problème de correction de front d’onde dans le contexte de l’optique actif. Nous proposons un algorithme pour mesurer les aberrations de front d’onde sur un senseur de type Shack-Hartmann (SHWFS en anglais) en observant la terre. Nous proposons ici une revue de l’état de l’art des méthodes pour le SHWFS utilisé sur des scènes étendues (comme la terre) et concevons une nouvelle méthode pour améliorer l’estimation de front d’onde, en utilisant une approche basée sur l’équation du flot optique. Nous proposons également deux méthodes de validation afin d’assurer une estimation correcte du front d’onde sur les scènes étendues. Tandis que la première est basée sur une adaptation numérique des bornes inférieures (théoriques) pour le recalage d’images, la seconde méthode défausse rapidement les paysages en se basant sur la distribution des gradients. La deuxième application de satellite abordée est la conception numérique d’une nouvelle génération de senseur du type Time Delay Integration (TDI). Dans ce nouveau concept, la stabilisation active en temps réel du TDI est réalisée pour étendre considérablement le temps d’intégration, et donc augmenter le RSB des images. Les lignes du TDI ne peuvent pas être fusionnées directement par addition parce que leur position est modifiée par des microvibrations. Celles-ci doivent être compensées en temps réel avec une précision sous-pixellique. Nous étudions les limites fondamentales théoriques de ce problème et proposons une solution qui s’en approche. Nous présentons un système utilisant la convolution temporelle conjointement à une estimation en ligne du bruit de capteur, à une estimation de décalage basée sur les gradients et à une méthode multiimage non conventionnelle pour mesurer les déplacements globaux. Les résultats obtenus sont concluants sur les fronts de la précision et de la complexité. Pour des modèles de transformation plus complexes, une nouvelle méthode effectuant l’estimation précise et robuste des modèles de mise en correspondance des points d’intérêt entre images est proposée. La difficulté provenant de la présence de fausses correspondances et de mesures bruitées conduit à un échec des méthodes de régression traditionnelles. En vision par ordinateur, RANSAC est certainement la méthode la plus utilisée pour surmonter ces difficultés. RANSAC est capable de discriminer les fausses correspondances en générant de façon aléatoire des hypothèses et en vérifiant leur consensus. Cependant, sa réponse est basée sur la seule itération qui a obtenu le consensus le plus large, et elle ignore toutes les autres hypothèses. Nous montrons ici que la précision peut être améliorée en agrégeant toutes les hypothèses envisagées. Nous proposons également une stratégie simple qui permet de moyenner rapidement des transformations 2D, ce qui réduit le coût supplémentaire de calcul à quantité négligeable. Nous donnons des applications réelles pour estimer les transformations projectives et les transformations homographie + distorsion. En incluant une adaptation simple de LO-RANSAC dans notre cadre, l’approche proposée bat toutes les méthodes de l’état de l’art. Une analyse complète de l’approche proposée est réalisée, et elle démontre un net progrès en précision, stabilité et polyvalence. / This thesis starts with an in-depth study of fast and accurate sub-pixel shift estimationmethods. A full comparison is performed based on the common shift estimation problems occurring in real-life applications, namely, varying SNR conditions, differentdisplacement magnitudes, non-preservation of the brightness constancy constraint, aliasing, and most importantly, limited computational resources. Based on this study, in collaboration with CNES (the French space agency), two problems that are crucial for the digital optics of earth-observation satellites are analyzed.We first study the wavefront correction problem in an active optics context. We propose a fast and accurate algorithm to measure the wavefront aberrations on a Shack-HartmannWavefront Sensor (SHWFS) device observing the earth. We give here a review of state-of-the-art methods for SHWFS used on extended scenes (such as the earth) and devise a new method for improving wavefront estimation, based on a carefully refined approach based on the optical flow equation. This method takes advantage of the small shifts observed in a closed-loop wavefront correction system, yielding improved accuracy using fewer computational resources. We also propose two validation methods to ensure a correct wavefront estimation on extended scenes. While the first one is based on a numerical adaptation of the (theoretical) lower bounds of image registration, the second method rapidly discards landscapes based on the gradient distribution, inferred from the Eigenvalues of the structure tensor.The second satellite-based application that we address is the numerical design of a new generation of Time Delay Integration (TDI) sensor. In this new concept, active real-time stabilization of the TDI is performed to extend considerably the integration time, and therefore to boost the images SNR. The stripes of the TDI cannot be fused directly by addition because their position is altered by microvibrations. These must be compensated in real time using limited onboard computational resources with high subpixel accuracy. We study the fundamental performance limits for this problem and propose a real-time solution that nonetheless gets close to the theoretical limits. We introduce a scheme using temporal convolution together with online noise estimation, gradient-based shift estimation and a non-conventional multiframe method for measuring global displacements. The obtained results are conclusive on the fronts of accuracy and complexity and have strongly influenced the final decisions on the future configurations of Earth observation satellites at CNES.For more complex transformation models, a new image registration method performing accurate robust model estimation through point matches between images is proposed here. The difficulty coming from the presence of outliers causes the failure of traditional regression methods. In computer vision, RANSAC is definitely the most renowned method that overcomes such difficulties. It discriminates outliers by randomly generating minimalist sampled hypotheses and verifying their consensus over the input data. However, its response is based on the single iteration that achieved the largest inlier support, while discarding all other generated hypotheses. We show here that the resulting accuracy can be improved by aggregating all hypotheses. We also propose a simple strategy that allows to rapidly average 2D transformations, leading to an almost negligible extra computational cost. We give practical applications to the estimation of projective transforms and homography+distortion transforms. By including a straightforward adaptation of the locally optimized RANSAC in our framework, the proposed approach improves over every other available state-of-the-art method. A complete analysis of the proposed approach is performed, demonstrating its improved accuracy, stability and versatility.
2

Quelque progrès en débruitage d'images / Advances in Image Denoising

Pierazzo, Nicola 20 September 2016 (has links)
Cette thèse explore les dernières évolutions du débruitage d'images, et elle essaie de développer une vision synthétique des techniques utilisées jusqu'à présent. Elle aboutit à un nouvel algorithme de débruitage d'image évitant les artefacts et avec un meilleur PSNR que tous les algorithmes que nous avons pu évaluer. La première méthode que nous présentons est DA3D, un algorithme de débruitage fréquentiel avec guide, inspiré de DDID. La surprise de cet algorithme, c'est que le débruitage fréquentiel peut battre l'état de l'art sans produire artefacts. Cet algorithme produit des bons résultats non seulement en PSNR, mais aussi (et surtout) en qualité visuelle. DA3D marche particulièrement bien pour améliorer les textures des images et pour enlever les effets de staircasing.DA3D, guidé par un autre algorithme de débruitage améliore presque toujours le résultat de son guide. L'amélioration est particulièrement nette quand le guide est un algorithme à patchs, et alors on combine deux principes différents: auto-similarité suivi de seuillage fréquentiel. Le deuxième résultat présenté est une méthode universelle de débruitage multi-échelle, applicable à tout algorithme. Une analyse qualitative montre en effet que les algorithmes de débruitage à patchs éliminent surtout les hautes fréquences du bruit, à cause de la taille limitée des voisinages traités. Plutôt que d'agrandir ces voisinages nous décomposons l'image en une pyramide basée sur la transformée en cosinus discrète, avec une méthode de recomposition évitant le ringing. Cette méthode traite le bruit à basse fréquence, et améliore la qualité de l'image. Le troisième problème sérieux que nous abordons est l'évaluation des algorithmes de débruitage. Il est bien connu que le PSNR n'est pas un indice suffisant de qualité. Un artefact sur une zone lisse de l'image est bien plus visible qu'une altération en zone texturée. Nous proposons une nouvelle métrique basée sur un Smooth PSNR et un Texture PSNR, pour mesurer les résultats d'un algorithme sur ces deux types des régions. Il apparaît qu'un algorithme de débruitage, pour être considéré acceptable, doit avoir des bons résultats pour les deux métriques. Ces métriques sont finalement utilisées pour comparer les algorithmes de l'état de l'art avec notre algorithme final, qui combine les bénéfices du multi-échelle et du filtrage fréquentiel guidé. Les résultats étant très positifs, nous espérons que la thèse contribue à résoudre un vieux dilemme, pour lequel la méthode DDID avait apporté de précieuses indications : comment choisir entre le seuillage fréquentiel et les méthodes basées sur l'auto-similarité pour le débruitage d'images ? La réponse est qu'il ne faut pas choisir. Cette thèse termine avec quelques perspectives sur la faisabilité du débruitage "externe". Son principe est de débruiter un patch en utilisant une grande base de données externe de patches sans bruit. Un principe bayésien démontré par Levin et Nadler en 2011 implique que le meilleur résultat possible serait atteint avec cette méthode, à condition d'utiliser tous les patches observables. Nous donnons les arguments mathématiques prouvant que l'espace des patches peut être factorisé, ce qui permet de réduire la base de données de patches utilisés d'un facteur au moins 1000. / This thesis explores the last evolutions on image denoising, and attempts to set a new and more coherent background regarding the different techniques involved. In consequence, it also presents a new image denoising algorithm with minimal artifacts and the best PSNR performance known so far.A first result that is presented is DA3D, a frequency-based guided denoising algorithm inspired form DDID [Knaus-Zwicker 2013]. This demonstrates that, contrarily to what was thought, frequency-based denoising can beat state-of-the-art algorithms without presenting artifacts. This algorithm achieves good results not only in terms of PSNR, but also (and especially) with respect to visual quality. DA3D works particularly well on enhancing the textures of the images and removing staircasing effects.DA3D works on top of another denoising algorithm, that is used as a guide, and almost always improve its results. In this way, frequency-based denoising can be applied on top of patch-based denoising algorithms, resulting on a hybrid method that keeps the strengths of both. The second result presented is Multi-Scale Denoising, a framework that allows to apply any denoising algorithm on a multi-scale fashion. A qualitative analysis shows that current denoising algorithms behave better on high-frequency noise. This is due to the relatively small size of patches and search windows currently used. Instead of enlarging those patches, that can cause other sorts of problems, the work proposes to decompose the image on a pyramid, with the aid of the Discrete Cosine Transformation. A quantitative study is performed to recompose this pyramid in order to avoid the appearance of ringing artifacts. This method removes most of the low-frequency noise, and improves both PSNR and visual results for smooth and textured areas.A third main issue addressed in this thesis is the evaluation of denoising algorithms. Experiences indicate that PSNR is not always a good indicator of visual quality for denoising algorithms, since, for example, an artifact on a smooth area can be more noticeable than a subtle change in a texture. A new metric is proposed to improve on this matter. Instead of a single value, a ``Smooth PNSR'' and a ``Texture PSNR'' are presented, to measure the result of an algorithm for those two types of image regions. We claim that a denoising algorithm, in order to be considered acceptable, must at least perform well with respect to both metrics. Following this claim, an analysis of current algorithms is performed, and it is compared with the combined results of the Multi-Scale Framework and DA3D.We found that the optimal solution for image denoising is the application of a frequency shrinkage, applied to regular regions only, while a multiscale patch based method serves as guide. This seems to resolve a long standing question for which DDID gave the first clue: what is the respective role of frequency shrinkage and self-similarity based methods for image denoising? We describe an image denoising algorithm that seems to perform better in quality and PSNR than any other based on the right combination of both denoising principles. In addition, a study on the feasibility of external denoising is carried, where images are denoised by means of a big database of external noiseless patches. This follows a work of Levin and Nadler, in 2011, that claims that state-of-the-art results are achieved with this method if a large enough database is used. In the thesis it is shown that, with some observation, the space of all patches can be factorized, thereby reducing the number of patches needed in order to achieve this result. Finally, secondary results are presented. A brief study of how to apply denoising algorithms on real RAW images is performed. An improved, better performing version of the Non-Local Bayes algorithm is presented, together with a two-step version of DCT Denoising. The latter is interesting for its extreme simplicity and for its speed.
3

Applications de la transformée en ondelettes et de l'analyse multirésolution au traitement des images de télédétection

Ranchin, Thierry 23 July 1993 (has links) (PDF)
Après une présentation de la transformée en ondelettes et de l'analyse multirésolution ainsi que de leur mise en oeuvre, nous présentons, dans ce mémoire, les apports de ces deux outils à deux problèmes de télédétection : la fusion de données issues de capteurs de résolutions spatiales et spectrales différentes et le traitement du speckle dans l'imagerie radar. Dans le cadre de la fusion de données, nous avons développé une méthode, basée sur ces deux outils et permettant d'obtenir des images ayant la meilleure des résolutions spatiales présentes dans le groupe d'images à fusionner tout en préservant la qualité de l'information spectrale pour les phénomènes qu'ils représentent. L'utilisation de ces deux outils pour le traitement du speckle dans l'imagerie radar a permis l'amélioration des performances d'un filtre du point de vue de la qualité radiométrique. La démarche employée n'est pas limitée à un seul filtre et permettra d'obtenir une réduction importante du speckle dans les zones homogènes tout en préservant l'information géométrique présente dans l'image. Les apports de la transformée en ondelettes et de l'analyse multirésolution et les perspectives de l'utilisation de ces outils dans le cadre de la télédétection sont discutés.
4

Contributions to Mean Shift filtering and segmentation : Application to MRI ischemic data / Contributions au filtrage Mean Shift à la segmentation : Application à l’ischémie cérébrale en imagerie IRM

Li, Thing 04 April 2012 (has links)
De plus en plus souvent, les études médicales utilisent simultanément de multiples modalités d'acquisition d'image, produisant ainsi des données multidimensionnelles comportant beaucoup d'information supplémentaire dont l'interprétation et le traitement deviennent délicat. Par exemple, les études sur l'ischémie cérébrale se basant sur la combinaison de plusieurs images IRM, provenant de différentes séquences d'acquisition, pour prédire l'évolution de la zone nécrosée, donnent de bien meilleurs résultats que celles basées sur une seule image. Ces approches nécessitent cependant l'utilisation d'algorithmes plus complexes pour réaliser les opérations de filtrage, segmentation et de clustering. Une approche robuste pour répondre à ces problèmes de traitements de données multidimensionnelles est le Mean Shift qui est basé sur l'analyse de l'espace des caractéristiques et l'estimation non-paramétrique par noyau de la densité de probabilité. Dans cette thèse, nous étudions les paramètres qui influencent les résultats du Mean Shift et nous cherchons à optimiser leur choix. Nous examinons notamment l'effet du bruit et du flou dans l'espace des caractéristiques et comment le Mean Shift doit être paramétrés pour être optimal pour le débruitage et la réduction du flou. Le grand succès du Mean Shift est principalement du au réglage intuitif de ces paramètres de la méthode. Ils représentent l'échelle à laquelle le Mean Shift analyse chacune des caractéristiques. En se basant sur la méthode du Plug In (PI) monodimensionnel, fréquemment utilisé pour le filtrage Mean Shift et permettant, dans le cadre de l'estimation non-paramétrique par noyau, d'approximer le paramètre d'échelle optimal, nous proposons l'utilisation du PI multidimensionnel pour le filtrage Mean Shift. Nous évaluons l'intérêt des matrices d'échelle diagonales et pleines calculées à partir des règles du PI sur des images de synthèses et naturelles. Enfin, nous proposons une méthode de segmentation automatique et volumique combinant le filtrage Mean Shift et la croissance de région ainsi qu'une optimisation basée sur les cartes de probabilité. Cette approche est d'abord étudiée sur des images IRM synthétisées. Des tests sur des données réelles issues d'études sur l'ischémie cérébrale chez le rats et l'humain sont aussi conduits pour déterminer l'efficacité de l'approche à prédire l'évolution de la zone de pénombre plusieurs jours après l'accident vasculaire et ce, à partir des IRM réalisées peu de temps après la survenue de cet accident. Par rapport aux segmentations manuelles réalisées des experts médicaux plusieurs jours après l'accident, les résultats obtenus par notre approche sont mitigés. Alors qu'une segmentation parfaite conduirait à un coefficient DICE de 1, le coefficient est de 0.8 pour l'étude chez le rat et de 0.53 pour l'étude sur l'homme. Toujours en utilisant le coefficient DICE, nous déterminons la combinaison de d'images IRM conduisant à la meilleure prédiction. / Medical studies increasingly use multi-modality imaging, producing multidimensional data that bring additional information that are also challenging to process and interpret. As an example, for predicting salvageable tissue, ischemic studies in which combinations of different multiple MRI imaging modalities (DWI, PWI) are used produced more conclusive results than studies made using a single modality. However, the multi-modality approach necessitates the use of more advanced algorithms to perform otherwise regular image processing tasks such as filtering, segmentation and clustering. A robust method for addressing the problems associated with processing data obtained from multi-modality imaging is Mean Shift which is based on feature space analysis and on non-parametric kernel density estimation and can be used for multi-dimensional filtering, segmentation and clustering. In this thesis, we sought to optimize the mean shift process by analyzing the factors that influence it and optimizing its parameters. We examine the effect of noise in processing the feature space and how Mean Shift can be tuned for optimal de-noising and also to reduce blurring. The large success of Mean Shift is mainly due to the intuitive tuning of bandwidth parameters which describe the scale at which features are analyzed. Based on univariate Plug-In (PI) bandwidth selectors of kernel density estimation, we propose the bandwidth matrix estimation method based on multi-variate PI for Mean Shift filtering. We study the interest of using diagonal and full bandwidth matrix with experiment on synthesized and natural images. We propose a new and automatic volume-based segmentation framework which combines Mean Shift filtering and Region Growing segmentation as well as Probability Map optimization. The framework is developed using synthesized MRI images as test data and yielded a perfect segmentation with DICE similarity measurement values reaching the highest value of 1. Testing is then extended to real MRI data obtained from animals and patients with the aim of predicting the evolution of the ischemic penumbra several days following the onset of ischemia using only information obtained from the very first scan. The results obtained are an average DICE of 0.8 for the animal MRI image scans and 0.53 for the patients MRI image scans; the reference images for both cases are manually segmented by a team of expert medical staff. In addition, the most relevant combination of parameters for the MRI modalities is determined.

Page generated in 0.0254 seconds