Spelling suggestions: "subject:"decision tre regressors""
1 |
Maskininlärning som verktyg för att extrahera information om attribut kring bostadsannonser i syfte att maximera försäljningspris / Using machine learning to extract information from real estate listings in order to maximize selling priceEkeberg, Lukas, Fahnehjelm, Alexander January 2018 (has links)
The Swedish real estate market has been digitalized over the past decade with the current practice being to post your real estate advertisement online. A question that has arisen is how a seller can optimize their public listing to maximize the selling premium. This paper analyzes the use of three machine learning methods to solve this problem: Linear Regression, Decision Tree Regressor and Random Forest Regressor. The aim is to retrieve information regarding how certain attributes contribute to the premium value. The dataset used contains apartments sold within the years of 2014-2018 in the Östermalm / Djurgården district in Stockholm, Sweden. The resulting models returned an R2-value of approx. 0.26 and Mean Absolute Error of approx. 0.06. While the models were not accurate regarding prediction of premium, information was still able to be extracted from the models. In conclusion, a high amount of views and a publication made in April provide the best conditions for an advertisement to reach a high selling premium. The seller should try to keep the amount of days since publication lower than 15.5 days and avoid publishing on a Tuesday. / Den svenska bostadsmarknaden har blivit alltmer digitaliserad under det senaste årtiondet med nuvarande praxis att säljaren publicerar sin bostadsannons online. En fråga som uppstår är hur en säljare kan optimera sin annons för att maximera budpremie. Denna studie analyserar tre maskininlärningsmetoder för att lösa detta problem: Linear Regression, Decision Tree Regressor och Random Forest Regressor. Syftet är att utvinna information om de signifikanta attribut som påverkar budpremien. Det dataset som använts innehåller lägenheter som såldes under åren 2014-2018 i Stockholmsområdet Östermalm / Djurgården. Modellerna som togs fram uppnådde ett R²-värde på approximativt 0.26 och Mean Absolute Error på approximativt 0.06. Signifikant information kunde extraheras from modellerna trots att de inte var exakta i att förutspå budpremien. Sammanfattningsvis skapar ett stort antal visningar och en publicering i april de bästa förutsättningarna för att uppnå en hög budpremie. Säljaren ska försöka hålla antal dagar sedan publicering under 15.5 dagar och undvika att publicera på tisdagar.
|
2 |
Inclusive hyper- to dilute-concentrated suspended sediment transport study using modified rouse model: parametrized power-linear coupled approach using machine learningKumar, S., Singh, H.P., Balaji, S., Hanmaiahgari, P.R., Pu, Jaan H. 31 July 2022 (has links)
Yes / The transfer of suspended sediment can range widely from being diluted to being hyperconcentrated, depending on the local flow and ground conditions. Using the Rouse model and the
Kundu and Ghoshal (2017) model, it is possible to look at the sediment distribution for a range of
hyper-concentrated and diluted flows. According to the Kundu and Ghoshal model, the sediment
flow follows a linear profile for the hyper-concentrated flow regime and a power law applies for the
dilute concentrated flow regime. This paper describes these models and how the Kundu and
Ghoshal parameters (linear-law coefficients and power-law coefficients) are dependent on sediment
flow parameters using machine-learning techniques. The machine-learning models used are
XGboost Classifier, Linear Regressor (Ridge), Linear Regressor (Bayesian), K Nearest Neighbours,
Decision Tree Regressor, and Support Vector Machines (Regressor). The models were implemented
on Google Colab and the models have been applied to determine the relationship between every
Kundu and Ghoshal parameter with each sediment flow parameter (mean concentration, Rouse
number, and size parameter) for both a linear profile and a power-law profile. The models correctly
calculated the suspended sediment profile for a range of flow conditions ( 0.268 𝑚𝑚𝑚𝑚 ≤ 𝑑𝑑50 ≤
2.29 𝑚𝑚𝑚𝑚, 0.00105 𝑔𝑔
𝑚𝑚𝑚𝑚3 ≤ particle density ≤ 2.65 𝑔𝑔
𝑚𝑚𝑚𝑚3 , 0.197 𝑚𝑚𝑚𝑚
𝑠𝑠 ≤ 𝑣𝑣𝑠𝑠 ≤ 96 𝑚𝑚𝑚𝑚
𝑠𝑠 , 7.16 𝑚𝑚𝑚𝑚
𝑠𝑠 ≤ 𝑢𝑢∗ ≤
63.3 𝑚𝑚𝑚𝑚
𝑠𝑠 , 0.00042 ≤ 𝑐𝑐̅≤ 0.54), including a range of Rouse numbers (0.0076 ≤ 𝑃𝑃 ≤ 23.5). The models
showed particularly good accuracy for testing at low and extremely high concentrations for type I
to III profiles.
|
Page generated in 0.0691 seconds