• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2929
  • 276
  • 199
  • 187
  • 160
  • 82
  • 48
  • 29
  • 25
  • 21
  • 20
  • 15
  • 14
  • 12
  • 12
  • Tagged with
  • 4974
  • 2948
  • 1301
  • 1098
  • 1090
  • 811
  • 745
  • 739
  • 557
  • 549
  • 546
  • 507
  • 479
  • 468
  • 457
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
801

Machine Learning and Field Inversion approaches to Data-Driven Turbulence Modeling

Michelen Strofer, Carlos Alejandro 27 April 2021 (has links)
There still is a practical need for improved closure models for the Reynolds-averaged Navier-Stokes (RANS) equations. This dissertation explores two different approaches for using experimental data to provide improved closure for the Reynolds stress tensor field. The first approach uses machine learning to learn a general closure model from data. A novel framework is developed to train deep neural networks using experimental velocity and pressure measurements. The sensitivity of the RANS equations to the Reynolds stress, required for gradient-based training, is obtained by means of both variational and ensemble methods. The second approach is to infer the Reynolds stress field for a flow of interest from limited velocity or pressure measurements of the same flow. Here, this field inversion is done using a Monte Carlo Bayesian procedure and the focus is on improving the inference by enforcing known physical constraints on the inferred Reynolds stress field. To this end, a method for enforcing boundary conditions on the inferred field is presented. The two data-driven approaches explored and improved upon here demonstrate the potential for improved practical RANS predictions. / Doctor of Philosophy / The Reynolds-averaged Navier-Stokes (RANS) equations are widely used to simulate fluid flows in engineering applications despite their known inaccuracy in many flows of practical interest. The uncertainty in the RANS equations is known to stem from the Reynolds stress tensor for which no universally applicable turbulence model exists. The computational cost of more accurate methods for fluid flow simulation, however, means RANS simulations will likely continue to be a major tool in engineering applications and there is still a need for improved RANS turbulence modeling. This dissertation explores two different approaches to use available experimental data to improve RANS predictions by improving the uncertain Reynolds stress tensor field. The first approach is using machine learning to learn a data-driven turbulence model from a set of training data. This model can then be applied to predict new flows in place of traditional turbulence models. To this end, this dissertation presents a novel framework for training deep neural networks using experimental measurements of velocity and pressure. When using velocity and pressure data, gradient-based training of the neural network requires the sensitivity of the RANS equations to the learned Reynolds stress. Two different methods, the continuous adjoint and ensemble approximation, are used to obtain the required sensitivity. The second approach explored in this dissertation is field inversion, whereby available data for a flow of interest is used to infer a Reynolds stress field that leads to improved RANS solutions for that same flow. Here, the field inversion is done via the ensemble Kalman inversion (EKI), a Monte Carlo Bayesian procedure, and the focus is on improving the inference by enforcing known physical constraints on the inferred Reynolds stress field. To this end, a method for enforcing boundary conditions on the inferred field is presented. While further development is needed, the two data-driven approaches explored and improved upon here demonstrate the potential for improved practical RANS predictions.
802

Summarizing Legal Depositions

Chakravarty, Saurabh 18 January 2021 (has links)
Documents like legal depositions are used by lawyers and paralegals to ascertain the facts pertaining to a case. These documents capture the conversation between a lawyer and a deponent, which is in the form of questions and answers. Applying current automatic summarization methods to these documents results in low-quality summaries. Though extensive research has been performed in the area of summarization, not all methods succeed in all domains. Accordingly, this research focuses on developing methods to generate high-quality summaries of depositions. As part of our work related to legal deposition summarization, we propose a solution in the form of a pipeline of components, each addressing a sub-problem; we argue that a pipeline based framework can be tuned to summarize documents from any domain. First, we developed methods to parse the depositions, accounting for different document formats. We were able to successfully parse both a proprietary and a public dataset with our methods. We next developed methods to anonymize the personal information present in the deposition documents; we achieve 95% accuracy on the anonymization using a random sampling based evaluation. Third, we developed an ontology to define dialog acts for the questions and answers present in legal depositions. Fourth, we developed classifiers based on this ontology and achieved F1-scores of 0.84 and 0.87 on the public and proprietary datasets, respectively. Fifth, we developed methods to transform a question-answer pair to a canonical/simple form. In particular, based on the dialog acts for the question and answer combination, we developed transformation methods using each of traditional NLP, and deep learning, techniques. We were able to achieve good scores on the ROUGE and semantic similarity metrics for most of the dialog act combinations. Sixth, we developed methods based on deep learning, heuristics, and machine translation to correct the transformed declarative sentences. The sentence correction improved the readability of the transformed sentences. Seventh, we developed a methodology to break a deposition into its topical aspects. An ontology for aspects was defined for legal depositions, and classifiers were developed that achieved an F1-score of 0.89. Eighth, we developed methods to segment the deposition into parts that have the same thematic context. The segments helped in augmenting candidate summary sentences with surrounding context, that leads to a more readable summary. Ninth, we developed a pipeline to integrate all of the methods, to generate summaries from the depositions. We were able to outperform the baseline and state of the art summarization methods in a majority of the cases based on the F1, Recall, and ROUGE-2 scores. The performance gains were statistically significant for all of the scores. The summaries generated by our system can be arranged based on the same thematic context or aspect and hence should be much easier to read and follow, compared to the baseline methods. As part of our future work, we will improve upon these methods. We will refine our methods to identify the important parts using additional documents related to a deposition. In addition, we will work to improve the compression ratio of the generated summaries by reducing the number of unimportant sentences. We will expand the training dataset to learn and tune the coverage of the aspects for various deponent types using empirical methods. Our system has demonstrated effectiveness in transforming a QA pair into a declarative sentence. Having such a capability could enable us to generate a narrative summary from the depositions, a first for legal depositions. We will also expand our dataset for evaluation to ensure that our methods are indeed generalizable, and that they work well when experts subjectively evaluate the quality of the deposition summaries. / Doctor of Philosophy / Documents in the legal domain are of various types. One set of documents includes trial and deposition transcripts. These documents capture the proceedings of a trial or a deposition by note-taking, often over many hours. They contain conversation sentences that are spoken during the trial or deposition and involve multiple actors. One of the greatest challenges with these documents is that generally, they are long. This is a source of pain for attorneys and paralegals who work with the information contained in the documents. Text summarization techniques have been successfully used to compress a document and capture the salient parts from it. They have also been able to reduce redundancy in summary sentences while focusing on coherence and proper sentence formation. Summarizing trial and deposition transcripts would be immensely useful for law professionals, reducing the time to identify and disseminate salient information in case related documents, as well as reducing costs and trial preparation time. Processing the deposition documents using traditional text processing techniques is a challenge because of their form. Having the deposition conversations transformed into a suitable declarative form where they can be easily comprehended can pave the way for the usage of extractive and abstractive summarization methods. As part of our work, we identified the different discourse structures present in the deposition in the form of dialog acts. We developed methods based on those dialog acts to transform the deposition into a declarative form. We were able to achieve an accuracy of 87% on the dialog act classification. We also were able to transform the conversational question-answer (QA) pairs into declarative forms for 10 of the top-11 dialog act combinations. Our transformation methods performed better in 8 out of the 10 QA pair types, when compared to the baselines. We also developed methods to classify the deposition QA pairs according to their topical aspects. We generated summaries using aspects by defining the relative coverage for each aspect that should be present in a summary. Another set of methods developed can segment the depositions into parts that have the same thematic context. These segments aid augmenting the candidate summary sentences, to create a summary where information is surrounded by associated context. This makes the summary more readable and informative; we were able to significantly outperform the state of the art methods, based on our evaluations.
803

Reliable Low Latency Machine Learning for Resource Management in Wireless Networks

Taleb Zadeh Kasgari, Ali 30 March 2022 (has links)
Next-generation wireless networks must support a plethora of new applications ranging from the Internet of Things to virtual reality. Each one of these emerging applications have unique rate, reliability, and latency requirements that substantially differ from traditional services such as video streaming. Hence, there is a need for designing an efficient resource management framework that is taking into account different components that can affect the resource usage, including less obvious factors such as human behavior that contribute to the resource usage of the system. The use of machine learning for modeling mentioned components in a resource management system is a promising solution. This is because many hidden factors might contribute to the resource usage pattern of users or machine-type devices that can only be modeled using an end-to-end machine learning solution. Therefore, machine learning algorithms can be used either for modeling a complex factor such as the human brain's delay perception or for designing an end-to-end resource management system. The overarching goal of this dissertation is to develop and deploy machine learning frameworks that are suitable to model the various components of a wireless resource management system that must provide reliable and low latency service to the users. First, by explicitly modeling the limitations of the human brain, a concrete measure for the delay perception of human users in a wireless network is introduced. Then, a new probabilistic model for this delay perception is learned based on the brain features of a human user. Given the learned model for the delay perception of the human brain, a brain-aware resource management algorithm is proposed for allocating radio resources to human users while minimizing the transmit power and taking into account the reliability of both machine type devices and human users. Next, a novel experienced deep reinforcement learning (deep-RL) framework is proposed to provide model-free resource allocation for ultra reliable low latency communication (URLLC) in the downlink of a wireless network. The proposed, experienced deep-RL framework can guarantee high end-to-end reliability and low end-to-end latency, under explicit data rate constraints, for each wireless user without any models of or assumptions on the users' traffic. In particular, in order to enable the deep-RL framework to account for extreme network conditions and operate in highly reliable systems, a new approach based on generative adversarial networks (GANs) is proposed. After that, the problem of network slicing is studied in the context of a wireless system having a time-varying number of users that require two types of slices: reliable low latency (RLL) and self-managed (capacity limited) slices. To address this problem, a novel control framework for stochastic optimization is proposed based on the Lyapunov drift-plus-penalty method. This new framework enables the system to minimize power, maintain slice isolation, and provide reliable and low latency end-to-end communication for RLL slices. Then, a novel concept of three-dimensional (3D) cellular networks, that integrate drone base stations (drone-BS) and cellular-connected drone users (drone-UEs), is introduced. For this new 3D cellular architecture, a novel framework for network planning for drone-BSs as well as latency-minimal cell association for drone-UEs is proposed. For network planning, a tractable method for drone-BSs' deployment based on the notion of truncated octahedron shapes is proposed that ensures full coverage for a given space with minimum number of drone-BSs. In addition, to characterize frequency planning in such 3D wireless networks, an analytical expression for the feasible integer frequency reuse factors is derived. Subsequently, an optimal 3D cell association scheme is developed for which the drone-UEs' latency, considering transmission, computation, and backhaul delays, is minimized. Finally, the concept of super environments is introduced. After formulating this concept mathematically, it is shown that any two markov decision process (MDP) can be a member of a super environment if sufficient additional state space is added. Then the effect of this additional state space on model-free and model-based deep-RL algorithms is investigated. Next, the tradeoff caused by adding the extra state space on the speed of convergence and the optimality of the solution is discussed. In summary, this dissertation led to the development of machine learning algorithms for statistically modeling complex parts in the resource management system. Also, it developed a model-free controller that can control the resource management system reliably, with low latency, and optimally. / Doctor of Philosophy / Next-generation wireless networks must support a plethora of new applications ranging from the Internet of Things to virtual reality. Each one of these emerging applications have unique requirements that substantially differ from traditional services such as video streaming. Hence, there is a need for designing a new and efficient resource management framework that is taking into account different components that can affect the resource usage, including less obvious factors such as human behavior that contributes to the resource usage of the system. The use of machine learning for modeling mentioned components in a resource management system is a promising solution. This is because of the data-driven nature of machine learning algorithms that can help us to model many hidden factors that might contribute to the resource usage pattern of users or devices. These hidden factors can only be modeled using an end-to-end machine learning solution. By end-to-end, we mean the system only relies on its observation of the quality of service (QoS) for users. Therefore, machine learning algorithms can be used either for modeling a complex factor such as the human brain's delay perception or for designing an end-to-end resource management system. The overarching goal of this dissertation is to develop and deploy machine learning frameworks that are suitable to model the various components of a wireless resource management system that must provide reliable and low latency service to the users.
804

Deep Learning for Enhancing Precision Medicine

Oh, Min 07 June 2021 (has links)
Most medical treatments have been developed aiming at the best-on-average efficacy for large populations, resulting in treatments successful for some patients but not for others. It necessitates the need for precision medicine that tailors medical treatment to individual patients. Omics data holds comprehensive genetic information on individual variability at the molecular level and hence the potential to be translated into personalized therapy. However, the attempts to transform omics data-driven insights into clinically actionable models for individual patients have been limited. Meanwhile, advances in deep learning, one of the most promising branches of artificial intelligence, have produced unprecedented performance in various fields. Although several deep learning-based methods have been proposed to predict individual phenotypes, they have not established the state of the practice, due to instability of selected or learned features derived from extremely high dimensional data with low sample sizes, which often results in overfitted models with high variance. To overcome the limitation of omics data, recent advances in deep learning models, including representation learning models, generative models, and interpretable models, can be considered. The goal of the proposed work is to develop deep learning models that can overcome the limitation of omics data to enhance the prediction of personalized medical decisions. To achieve this, three key challenges should be addressed: 1) effectively reducing dimensions of omics data, 2) systematically augmenting omics data, and 3) improving the interpretability of omics data. / Doctor of Philosophy / Most medical treatments have been developed aiming at the best-on-average efficacy for large populations, resulting in treatments successful for some patients but not for others. It necessitates the need for precision medicine that tailors medical treatment to individual patients. Biological data such as DNA sequences and snapshots of genetic activities hold comprehensive information on individual variability and hence the potential to accelerate personalized therapy. However, the attempts to transform data-driven insights into clinical models for individual patients have been limited. Meanwhile, advances in deep learning, one of the most promising branches of artificial intelligence, have produced unprecedented performance in various fields. Although several deep learning-based methods have been proposed to predict individual treatment or outcome, they have not established the state of the practice, due to the complexity of biological data and limited availability, which often result in overfitted models that may work on training data but not on test data or unseen data. To overcome the limitation of biological data, recent advances in deep learning models, including representation learning models, generative models, and interpretable models, can be considered. The goal of the proposed work is to develop deep learning models that can overcome the limitation of omics data to enhance the prediction of personalized medical decisions. To achieve this, three key challenges should be addressed: 1) effectively reducing the complexity of biological data, 2) generating realistic biological data, and 3) improving the interpretability of biological data.
805

Solutions to Passageways Detection in Natural Foliage with Biomimetic Sonar Robot

Wang, Ruihao 22 June 2022 (has links)
Numerous bats species have evolved biosonar to obtain information from their habitats with dense vegetation. Different from man-made sensors, such as stereo cameras and LiDAR, bats' biosonar has much lower spatial resolution and sampling rates. Their biosonar is capable of reliably finding narrow gaps in foliage to serve as a passageway to fly through. To investigate the sensory information under such capability, we have used a biomimetic sonar robot to collect the narrow gap echoes from an artificial hedge in a laboratory setup and from the natural foliage in outdoor environments respectively. The work in this dissertation presents the performance of a conventional energy approach and a deep-learning approach in the classification of echoes from foliage and gap. The deep-learning approach has better foliage versus passageway classification accuracy than the energy approach in both experiments, and it also shows good robustness than the latter one when dealing with data with great varieties in the outdoor experiments. A class activation mapping approach indicates that the initial rising flank inside the echo spectrogram contains critical information. This result corresponds to the neuromorphic spiking model which could be simplified as times where the echo amplitude crosses a certain threshold in a certain frequency range. With these findings, it could be demonstrated that the sensory information in clutter echoes plays an important role in detecting passageways in foliage regardless of the wider beamwith than the passageway geometry. / Doctor of Philosophy / Many bats species are able to navigate and hunt in habitats with dense vegetation based on trains of biosonar echoes as their primary sources for sensory information on the environment. Drones equipped with man-made sensory systems such as optical, thermal, or LiDAR sensors, still face challenges when navigating in dense foliage. Bats are not only able to achieve higher reliability in detecting narrow gaps but accomplish this with much lower spatial resolutions and data rates than those of man-made sensors. To study which sensory information is accessible to bat biosonar for detecting passageways in foliage, a robot consisting of a biomimetic sonar and a camera system has been used to collect a large number of echoes and corresponding images (∼130k samples) from an artificial hedge constructed in the laboratory and various natural foliage targets found outdoors. We have applied a conventional energy approach which is widely used in engineered sonar but is limited by the biosonar's wide beamwidth and only achieves a foliage-versus-passageway classification accuracy of ∼70%. To deal with this situation, a deep-learning approach has been used to improve performance. Besides that, a transparent AI approach has been applied to overcome the black-box property and highlight the region of interest of the deep-learning classifier. The results achieved in detecting passageways were closely matched between the artificial hedge in the laboratory setup and the field data. With the best classification accuracy of 97.13% (artificial hedge) and 96.64% (field data) by the deep-learning approach, this work indicates the potential of exploring sensory information based on clutter echoes from complex environments for detecting passageways in foliage.
806

Deep Reinforcement Learning for Next Generation Wireless Networks with Echo State Networks

Chang, Hao-Hsuan 26 August 2021 (has links)
This dissertation considers a deep reinforcement learning (DRL) setting under the practical challenges of real-world wireless communication systems. The non-stationary and partially observable wireless environments make the learning and the convergence of the DRL agent challenging. One way to facilitate learning in partially observable environments is to combine recurrent neural network (RNN) and DRL to capture temporal information inherent in the system, which is referred to as deep recurrent Q-network (DRQN). However, training DRQN is known to be challenging requiring a large amount of training data to achieve convergence. In many targeted wireless applications in the 5G and future 6G wireless networks, the available training data is very limited. Therefore, it is important to develop DRL strategies that are capable of capturing the temporal correlation of the dynamic environment that only requires limited training overhead. In this dissertation, we design efficient DRL frameworks by utilizing echo state network (ESN), which is a special type of RNNs where only the output weights are trained. To be specific, we first introduce the deep echo state Q-network (DEQN) by adopting ESN as the kernel of deep Q-networks. Next, we introduce federated ESN-based policy gradient (Fed-EPG) approach that enables multiple agents collaboratively learn a shared policy to achieve the system goal. We designed computationally efficient training algorithms by utilizing the special structure of ESNs, which have the advantage of learning a good policy in a short time with few training data. Theoretical analyses are conducted for DEQN and Fed-EPG approaches to show the convergence properties and to provide a guide to hyperparameter tuning. Furthermore, we evaluate the performance under the dynamic spectrum sharing (DSS) scenario, which is a key enabling technology that aims to utilize the precious spectrum resources more efficiently. Compared to a conventional spectrum management policy that usually grants a fixed spectrum band to a single system for exclusive access, DSS allows the secondary system to dynamically share the spectrum with the primary system. Our work sheds light on the real deployments of DRL techniques in next generation wireless systems. / Doctor of Philosophy / Model-free reinforcement learning (RL) algorithms such as Q-learning are widely used because it can learn the policy directly through interactions with the environment without estimating a model of the environment, which is useful when the underlying system model is complex. Q-learning performs poorly for large-scale models because the training has to updates every element in a large Q-table, which makes training difficult or even impossible. Therefore, deep reinforcement learning (DRL) exploits the powerful deep neural network to approximate the Q-table. Furthermore, a deep recurrent Q-network (DRQN) is introduced to facilitate learning in partially observable environments. However, DRQN training requires a large amount of training data and a long training time to achieve convergence, which is impractical in wireless systems with non-stationary environments and limited training data. Therefore, in this dissertation, we introduce two efficient DRL approaches: deep echo state Q-network (DEQN) and federated ESN-based policy gradient (Fed-EPG) approaches. Theoretical analyses of DEQN and Fed-EPG are conducted to provide the convergence properties and the guideline for designing hyperparameters. We evaluate and demonstrate the performance benefits of the DEQN and Fed-EPG under the dynamic spectrum sharing (DSS) scenario, which is a critical technology to efficiently utilize the precious spectrum resources in 5G and future 6G wireless networks.
807

Student Satisfaction, Perceived Employability Skills, and Deep Approaches to Learning: A Structural Equation Modeling Analyses

Kapania, Madhu Bala 05 June 2023 (has links)
This study explored the relationship of Deep Approaches to Learning (DAL) with overall students' satisfaction and perceived employability skills in the field of Science, Technology, Engineering and Mathematics (STEM) for the undergraduate seniors in the U.S. The study also aimed to investigate whether there is a difference between students in STEM and non-STEM fields on the relationship of DAL to overall student satisfaction and students' perceived employability skills. The data for the analysis was taken from the National Study of Student Engagement (NSSE) data. The Structural Equation Modeling (SEM) analysis was applied to explore the relationship between students' Deep Approaches to Learning (DAL), overall students' satisfaction and their perceived employability skills. The measurement invariance testing explored whether estimated factors are measuring the same constructs for STEM and non-STEM groups. The findings of the study show that HO and RI construct was found to have statistically significant positive total (direct and indirect) effect on overall student satisfaction. Further, the results show that HO and RI learning activities were identified as the statistically significant factors in predicting students' perceived employability skills for STEM students. The HO and RI have a statistically significant positive effect on perceived employability skills for STEM and the non-STEM students. The STEM students have a higher effect of HO learning activities on perceived employability skills than the non-STEM students. Further, the direct effect of perceived employability skill on overall student satisfaction is also positive for both the groups. The findings of the study confirmed the indirect effect of employability on overall students' satisfaction for both STEM and non-STEM students. This study has created strong groundwork for future researchers to use the measurement models and the hypothesized full structure model for invariance testing among the groups of STEM and non-STEM in higher education in the U.S. Thus, this measurement model has a strong generalizability to both STEM and non-STEM groups. The implications and limitations of study are further discussed. / Doctor of Philosophy / There is an increasing consensus that for a society to solve complex problems that are related to climate, health, general economic development, and security, study in Science, Technology, Engineering, and Math (STEM) fields is critical to develop the skills that are needed to tackle those issues. However, there are reports on STEM education in the U.S. that have revealed that there is a general concern among policymakers and industrial leaders about the shortage of workers who are trained in STEM fields. To enhance the students' academic achievement, cognitive development, personal and social development, and to encourage them to be life-long learners, postsecondary institutions need to build a learning atmosphere that supports their deep learning approaches. This study explored the relationship of Deep Approaches to Learning (DAL) with overall students' satisfaction and perceived employability skills in the field of Science, Technology, Engineering and Mathematics (STEM) for the undergraduate seniors in the U.S. The study also investigated whether there is a difference between students in STEM and non-STEM fields on the relationship of DAL to overall student satisfaction and students' perceived employability skills at higher education. It has further shed a light on why the difference in patterns exist and can give direction on how teaching and learning can be improved in STEM and non-STEM fields. The findings of the study suggests that Higher order (HO) and Reflective/Integrative (RI) have a positive effect on overall students' satisfaction for STEM students. The HO has a statistically significant higher effect on perceived employability skills for STEM students the for the non-STEM students. The effect of perceived employability skills on overall students' satisfaction on STEM and non-STEM students is positively high for both the groups. In order to enhance students' overall satisfaction with their university experience, the universities need to continuously develop new strategies and programs to make sure students are well-equipped with perceived employability skills.
808

Active Learning Under Limited Interaction with Data Labeler

Chen, Si January 2021 (has links)
Active learning (AL) aims at reducing labeling effort by identifying the most valuable unlabeled data points from a large pool. Traditional AL frameworks have two limitations: First, they perform data selection in a multi-round manner, which is time-consuming and impractical. Second, they usually assume that there are a small amount of labeled data points available in the same domain as the data in the unlabeled pool. In this thesis, we initiate the study of one-round active learning to solve the first issue. We propose DULO, a general framework for one-round setting based on the notion of data utility functions, which map a set of data points to some performance measure of the model trained on the set. We formulate the one-round active learning problem as data utility function maximization. We then propose D²ULO on the basis of DULO as a solution that solves both issues. Specifically, D²ULO leverages the idea of domain adaptation (DA) to train a data utility model on source labeled data. The trained utility model can then be used to select high-utility data in the target domain and at the same time, provide an estimate for the utility of the selected data. Our experiments show that the proposed frameworks achieves better performance compared with state-of-the-art baselines in the same setting. Particularly, D²ULO is applicable to the scenario where the source and target labels have mismatches, which is not supported by the existing works. / M.S. / Machine Learning (ML) has achieved huge success in recent years. Machine Learning technologies such as recommendation system, speech recognition and image recognition play an important role on human daily life. This success mainly build upon the use of large amount of labeled data: Compared with traditional programming, a ML algorithm does not rely on explicit instructions from human; instead, it takes the data along with the label as input, and aims to learn a function that can correctly map data to the label space by itself. However, data labeling requires human effort and could be time-consuming and expensive especially for datasets that contain domain-specific knowledge (e.g., disease prediction etc.) Active Learning (AL) is one of the solution to reduce data labeling effort. Specifically, the learning algorithm actively selects data points that provide more information for the model, hence a better model can be achieved with less labeled data. While traditional AL strategies do achieve good performance, it requires a small amount of labeled data as initialization and performs data selection in multi-round, which pose great challenge to its application, as there is no platform provide timely online interaction with data labeler and the interaction is often time inefficient. To deal with the limitations, we first propose DULO which a new setting of AL is studied: data selection is only allowed to be performed once. To further broaden the application of our method, we propose D²ULO which is built upon DULO and Domain Adaptation techniques to avoid the use of initial labeled data. Our experiments show that both of the proposed two frameworks achieve better performance compared with state-of-the-art baselines.
809

A Deep-learning based Approach for Foot Placement Prediction

Lee, Sung-Wook 24 May 2023 (has links)
Foot placement prediction can be important for exoskeleton and prosthesis controllers, human-robot interaction, or body-worn systems to prevent slips or trips. Previous studies investigating foot placement prediction have been limited to predicting foot placement during the swing phase, and do not fully consider contextual information such as the preceding step or the stance phase before push-off. In this study, a deep learning-based foot placement prediction approach was proposed, where the deep learning models were designed to sequentially process data from three IMU sensors mounted on pelvis and feet. The raw sensor data are pre-processed to generate multi-variable time-series data for training two deep learning models, where the first model estimates the gait progression and the second model subsequently predicts the next foot placement. The ground truth gait phase data and foot placement data are acquired from a motion capture system. Ten healthy subjects were invited to walk naturally at different speeds on a treadmill. In cross-subject learning, the trained models had a mean distance error of 5.93 cm for foot placement prediction. In single-subject learning, the prediction accuracy improved with additional training data, and a mean distance error of 2.60 cm was achieved by fine-tuning the cross-subject validated models with the target subject data. Even from 25-81% in the gait cycle, mean distance errors were only 6.99 cm and 3.22 cm for cross-subject learning and single-subject learning, respectively / Master of Science / This study proposes a new approach for predicting where a person's foot will land during walking, which could be useful in controlling robots and wearable devices that work with humans to prevent events such as slips and falls and allow for more smooth human-robot interactions. Although foot placement prediction has great potential in various domains, current works in this area are limited in terms of practicality and accuracy. The proposed approach uses data from inertial sensors attached to the pelvis and feet, and two deep learning models are trained to estimate the person's walking pattern and predict their next foot placement. The approach was tested on ten healthy individuals walking at different speeds on a treadmill, and achieved state-of-the-arts results. The results suggest that this approach could be a promising method when sufficient data from multiple people are available.
810

Parkinson's Disease Automated Hand Tremor Analysis from Spiral Images

DeSipio, Rebecca E. 05 1900 (has links)
Parkinson’s Disease is a neurological degenerative disease affecting more than six million people worldwide. It is a progressive disease, impacting a person’s movements and thought processes. In recent years, computer vision and machine learning researchers have been developing techniques to aid in the diagnosis. This thesis is motivated by the exploration of hand tremor symptoms in Parkinson’s patients from the Archimedean Spiral test, a paper-and-pencil test used to evaluate hand tremors. This work presents a novel Fourier Domain analysis technique that transforms the pencil content of hand-drawn spiral images into frequency features. Our technique is applied to an image dataset consisting of spirals drawn by healthy individuals and people with Parkinson’s Disease. The Fourier Domain analysis technique achieves 81.5% accuracy predicting images drawn by someone with Parkinson’s, a result 6% higher than previous methods. We compared this method against the results using extracted features from the ResNet-50 and VGG16 pre-trained deep network models. The VGG16 extracted features achieve 95.4% accuracy classifying images drawn by people with Parkinson’s Disease. The extracted features of both methods were also used to develop a tremor severity rating system which scores the spiral images on a scale from 0 (no tremor) to 1 (severe tremor). The results show correlation to the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS) developed by the International Parkinson and Movement Disorder Society. These results can be useful for aiding in early detection of tremors, the medical treatment process, and symptom tracking to monitor the progression of Parkinson’s Disease. / M.S. / Parkinson’s Disease is a neurological degenerative disease affecting more than six million people worldwide. It is a progressive disease, impacting a person’s movements and thought processes. In recent years, computer vision and machine learning researchers have been developing techniques to aid in the diagnosis. This thesis is motivated by the exploration of hand tremor symptoms in Parkinson’s patients from the Archimedean Spiral test, a paper-and-pencil test used to evaluate hand tremors. This work presents a novel spiral analysis technique that converts the pencil content of hand-drawn spirals into numeric values, called features. The features measure spiral smoothness. Our technique is applied to an image dataset consisting of spirals drawn by healthy and Parkinson’s individuals. The spiral analysis technique achieves 81.5% accuracy predicting images drawn by someone with Parkinson’s. We compared this method against the results using extracted features from pre-trained deep network models. The VGG16 pre-trained model extracted features achieve 95.4% accuracy classifying images drawn by people with Parkinson’s Disease. The extracted features of both methods were also used to develop a tremor severity rating system which scores the spiral images on a scale from 0 (no tremor) to 1 (severe tremor). The results show a similar trend to the tremor evaluations rated by the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS) developed by the International Parkinson and Movement Disorder Society. These results can be useful for aiding in early detection of tremors, the medical treatment process, and symptom tracking to monitor the progression of Parkinson’s Disease.

Page generated in 0.0755 seconds