• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Deep Placement Gel Bank as an Improved Oil Recovery Process: Modeling, Economic Analysis and Comparison to Polymer Flooding

Seyidov, Murad 2010 May 1900 (has links)
Many attempts have been made to control water conformance. It is very costly to produce, treat and dispose of water, and produced water represents the largest waste stream associated with oil and gas production. The production of large amounts of water results in: (a) the need for more complex water?oil separation; (b) corrosion of wellbore and other equipment; (c) a rapid decline in hydrocarbon production rate and ultimate recovery; and (d) consequently, premature abandonment of a well or field, leaving considerable hydrocarbons unproduced. Sometimes water production results from heterogeneities in the horizontal direction, which leads to uneven movement of the flood front and subsequent early breakthrough of water from high permeability layers. This problem is exacerbated if there is (vertical) hydraulic communication between layers so that crossflow can occur. One of the novel technologies in chemical enhanced oil recovery (EOR) is a gel type called deep diverting gel (DDG), which describes material that functions by plugging thief zones deep from the well where they were being injected. To evaluate the performance of this new treatment method, we will (1) model the treatment methods, (2) conduct economic analysis, and (3) compare different EOR methods. We have conducted relevant literature review about the development, design, modeling and economics of the enhanced oil recovery methods. Schlumberger's Eclipse simulator software has been used for modeling purposes. Modeling runs have demonstrated that placement of a DDG in a high permeability zone provided a blockage that diverted water into lower permeability areas, thus increasing the sweep of target zones. Research results demonstrated that, although higher recovery can be achieved with a polymer flood, the combination of delayed production response and large polymer amounts cause such projects to be less economically favorable than deep gel placement treatments. From results of several sensitivity runs, it can be concluded that plug size and oil viscosity are two determining factors in the efficiency of DDG treatments. For the assumed case, economic analysis demonstrated that DDG has the most positive net present value (NPV), with polymer flooding second and simply continuing the waterflood to its economic limit the least positive NPV.

Page generated in 0.1107 seconds