• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

DeepType: A Deep Neural Network Approach to Keyboard-Free Typing

Broekhuijsen, Joshua V. 23 February 2023 (has links) (PDF)
Textual data entry is an increasingly-important part of Human-Computer Interaction (HCI), but there is room for improvement in this domain. First, the keyboard -- a foundational text-entry device -- presents ergonomic challenges in terms of comfort and accuracy for even well-trained typists. Second, touch-screen smartphones -- some of the most ubiquitous mobile devices -- lack the physical space required to implement a full-size physical keyboard, and settle for a reduced input that can be slow and inaccurate. This thesis proposes and examines "DeepType" to begin addressing both of these problems in the form of a fully-virtual keyboard, realized through a deep recurrent neural network (DRNN) trained to recognize skeletal movement during typing. This network enables typing data to be extracted without a physical keyboard: a user can type on a flat surface as though on a keyboard, and the movement of their fingers (as recorded via monocular camera and estimated using a pre-trained model) is input into the DeepType network to provide output compatible with that output by a physical keyboard with 91.2% accuracy without any autocorrection. We show that this architecture is computationally feasible and sufficiently accurate for use when tailored to a specific subject, and suggest optimizations that may enable generalization. We also present a novel data capture system used to generate the training dataset for DeepType, including effective hand pose data normalization techniques.

Page generated in 0.0336 seconds