1 |
Análise de crédito e riscos de inadimplência em financiamentos de pessoas físicas na Guiné-Bissau: uma abordagem crítica e proposição de modelo experimentalCuma, Iaia Augusto 05 June 2012 (has links)
Made available in DSpace on 2016-04-25T16:44:29Z (GMT). No. of bitstreams: 1
Iaia Augusto Cuma.pdf: 3926944 bytes, checksum: a90853cb3f6ab828dc780f1e94c1c58e (MD5)
Previous issue date: 2012-06-05 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / The growth of installment credits in Guinea-Bissau during the study period from 2005 to 2010 can be explained by the relative economic stability, despite some political instability. The significant control of inflation, creating new job opportunities are factors that directly interfere with the purposes and the need to take credit. The study sought to explore and identify the determining factors in the increase of numbers of defaulters with the growth of credit to individuals in Guinea-Bissau. The research aims to contribute to a consistent model for the analysis of risk assessment of credit to individuals that fits the social and economic situation in Guinea-Bissau. To facilitate the review process for evaluating credit risk models were apresented Serasa, Magalhães and Mario and JOS developed bay Santos and Famá, considering a number of variables and parameters. To accomplish the purpose of this study, we addressed the fundamental processes of credit analysis (subjective and objective), regulatory and overview of the credit industry in Guinea-Bissau, its evolution, interest rates, inflation and GDP (Gross Domestic Product) in Guinea-Bissau. The presentation of the proposed model (2 JOS Credit Scoring) and its applicability in a sample of 200 clients drawn from the loan portfolio of the four commercial banks studied in Guinea-Bissau, logistic regression (Logit) yielded a rate adjustment of 54,70% by Nagelkerke index, or is, the model variables together contribute to the explanation of up to 54,70% of the increase in delinquencies in Guinea-Bissau. In Brazil, the same model was tested on a sample of a mid-sized financial institution, the result generated a rate adjustment of 81,90%, or is, the variables of the model, together, contribute to explaining up to 81,90% increase in default. But even with the moderate rate of success of the model is essential that banks in Guinea-Bissau to make continuous reassessment of the model, considering not only the selection and weighting of internal variables (non-systemic risks), as well as the inclusion of events external (systemic risk), which are directly related to income and payment capacity of borrowers / O crescimento de crediários em Guiné-Bissau no período estudado de 2005 a 2010 pode ser explicado pela relativa estabilidade econômica, apesar de algumas instabilidades políticas. O controle significativo da inflação, a criação de novas oportunidades de empregos são fatores que interferem diretamente nos propósitos e na necessidade de se tomar crédito. O estudo buscou explorar e identificar os fatores determinantes no aumento de números de inadimplentes com o crescimento de crédito às pessoas físicas em Guiné-Bissau. A pesquisa pretende-se contribuir com um modelo consistente de análise de avaliação de risco de crédito às pessoas físicas que se adéqua à realidade social e econômica da Guiné-Bissau. Para facilitar o processo de análise de avaliação de risco de crédito foram apresentados os modelos Serasa, Magalhães e Mario e JOS desenvolvido por Santos e Famá, considerando uma série de variáveis e parâmetros. Para efetivar o propósito deste trabalho, foram abordados os processos fundamentais de análise de crédito (subjetiva e objetiva), regulamentação e panorama do setor de crédito em Guiné-Bissau, sua evolução, taxas de juros, inflação e PIB (Produto Interno Bruto) em Guiné-Bissau. A apresentação do modelo proposto (JOS 2 de Credit Scoring) e sua aplicabilidade, em uma amostra de 200 clientes extraída da carteira de crédito dos quatro bancos comerciais estudados em Guiné-Bissau, a regressão logística (Logit) gerou um índice de ajustamento de 54,70% pelo índice de Nagelkerke, ou seja, as variáveis do modelo em conjunto, contribuem para a explicação de até 54,70% do aumento de inadimplência em Guiné-Bissau. No Brasil, o mesmo modelo foi testado em uma amostra de uma instituição financeira de médio porte, o resultado gerou um índice de ajustamento de 81,90%, ou seja, as variáveis do modelo, em conjunto, contribuem para a explicação de até 81,90% do aumento da inadimplência. Porém, mesmo com o índice moderado de acerto do modelo é indispensável que os bancos em Guiné-Bissau façam contínuas reavaliações do modelo, considerando não só a seleção e ponderação de variáveis internas (riscos não-sistêmicos), como também, a inclusão de eventos externos (riscos sistêmicos), que apresentam relação direta com a renda e a capacidade de pagamento dos tomadores
|
Page generated in 0.0656 seconds