Spelling suggestions: "subject:"defectuosos"" "subject:"defeitos""
1 |
Defective models for cure rate modelingRocha, Ricardo Ferreira da 01 April 2016 (has links)
Submitted by Bruna Rodrigues (bruna92rodrigues@yahoo.com.br) on 2016-10-03T11:30:55Z
No. of bitstreams: 1
TeseRFR.pdf: 5229141 bytes, checksum: 6f0e842f89ed4a41892f27532248ba4a (MD5) / Approved for entry into archive by Marina Freitas (marinapf@ufscar.br) on 2016-10-10T17:37:43Z (GMT) No. of bitstreams: 1
TeseRFR.pdf: 5229141 bytes, checksum: 6f0e842f89ed4a41892f27532248ba4a (MD5) / Approved for entry into archive by Marina Freitas (marinapf@ufscar.br) on 2016-10-10T17:37:50Z (GMT) No. of bitstreams: 1
TeseRFR.pdf: 5229141 bytes, checksum: 6f0e842f89ed4a41892f27532248ba4a (MD5) / Made available in DSpace on 2016-10-10T17:37:59Z (GMT). No. of bitstreams: 1
TeseRFR.pdf: 5229141 bytes, checksum: 6f0e842f89ed4a41892f27532248ba4a (MD5)
Previous issue date: 2016-04-01 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Modeling of a cure fraction, also known as long-term survivors, is a part of survival analysis. It studies cases where supposedly there are observations not susceptible to the event of interest. Such cases require special theoretical treatment, in a way that the modeling assumes the existence of such observations. We need to use some strategy to make the survival function converge to a value p 2 (0; 1), representing the cure rate. A way to model cure rates is to use defective distributions. These distributions are characterized by having probability density functions which integrate to values less than one when the
domain of some of their parameters is di erent from that usually de ned. There is not so much literature about these distributions. There are at least two distributions in the literature that can be used for defective modeling: the Gompertz and inverse Gaussian distribution. The defective models have the advantage of not need the assumption of the presence of immune individuals in the data set. In order to use the defective distributions theory in a competitive way, we need a larger variety of these distributions. Therefore, the main objective of this work is to increase the number of defective distributions that can be used in the cure rate modeling. We investigate how to extend baseline models using some family of distributions. In addition, we derive a property of the Marshall-Olkin family of distributions that allows one to generate new defective models. / A modelagem da fração de cura e uma parte importante da an álise de sobrevivência. Essa área estuda os casos em que, supostamente, existem observa ções não suscetíveis ao evento de interesse. Tais casos requerem um tratamento teórico especial, de forma que a modelagem pressuponha a existência de tais observações. E necessário usar alguma
estratégia para tornar a função de sobrevivência convergente para um valor p 2 (0; 1), que represente a taxa de cura. Uma forma de modelar tais frações e por meio de distribui ções defeituosas. Essas distribuições são caracterizadas por possuirem
funções de densidade de probabilidade que integram em valores inferiores a um quando o domínio de alguns dos seus parâmetros e diferente daquele em que e usualmente definido. Existem, pelo menos, duas distribuições defeituosas na literatura: a Gompertz e a inversa Gaussiana. Os modelos defeituosos têm a vantagem de não precisar pressupor a presença de indivíduos imunes no conjunto de dados. Para utilizar a teoria de d
istribuições defeituosas de forma competitiva e necessário uma maior variedade dessas distribuições. Portanto, o principal objetivo deste trabalho e aumentar o n úmero de distribuições defeituosas que podem ser utilizadas na modelagem de frações de curas. Nós investigamos como estender os modelos defeituosos básicos utilizando certas famílias de distribuições. Além disso, derivamos uma propriedade da famí lia Marshall-Olkin de distribuições que permite gerar uma nova classe de modelos defeituosos.
|
2 |
Abordagem semi-supervisionada para detecção de módulos de software defeituososOLIVEIRA, Paulo César de 31 August 2015 (has links)
Submitted by Fabio Sobreira Campos da Costa (fabio.sobreira@ufpe.br) on 2017-07-24T12:11:04Z
No. of bitstreams: 2
license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5)
Dissertação Mestrado Paulo César de Oliveira.pdf: 2358509 bytes, checksum: 36436ca63e0a8098c05718bbee92d36e (MD5) / Made available in DSpace on 2017-07-24T12:11:04Z (GMT). No. of bitstreams: 2
license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5)
Dissertação Mestrado Paulo César de Oliveira.pdf: 2358509 bytes, checksum: 36436ca63e0a8098c05718bbee92d36e (MD5)
Previous issue date: 2015-08-31 / Com a competitividade cada vez maior do mercado, aplicações de alto nível de
qualidade são exigidas para a automação de um serviço. Para garantir qualidade de
um software, testá-lo visando encontrar falhas antecipadamente é essencial no ciclo
de vida de desenvolvimento. O objetivo do teste de software é encontrar falhas que
poderão ser corrigidas e consequentemente, aumentar a qualidade do software em
desenvolvimento. À medida que o software cresce, uma quantidade maior de testes
é necessária para prevenir ou encontrar defeitos, visando o aumento da qualidade.
Porém, quanto mais testes são criados e executados, mais recursos humanos e de
infraestrutura são necessários. Além disso, o tempo para realizar as atividades de
teste geralmente não é suficiente, fazendo com que os defeitos possam escapar.
Cada vez mais as empresas buscam maneiras mais baratas e efetivas para detectar
defeitos em software. Muitos pesquisadores têm buscado nos últimos anos,
mecanismos para prever automaticamente defeitos em software. Técnicas de
aprendizagem de máquina vêm sendo alvo das pesquisas, como uma forma de
encontrar defeitos em módulos de software. Tem-se utilizado muitas abordagens
supervisionadas para este fim, porém, rotular módulos de software como defeituosos
ou não para fins de treinamento de um classificador é uma atividade muito custosa e
que pode inviabilizar a utilização de aprendizagem de máquina. Neste contexto, este
trabalho propõe analisar e comparar abordagens não supervisionadas e semisupervisionadas
para detectar módulos de software defeituosos. Para isto, foram
utilizados métodos não supervisionados (de detecção de anomalias) e também
métodos semi-supervisionados, tendo como base os classificadores AutoMLP e
Naive Bayes. Para avaliar e comparar tais métodos, foram utilizadas bases de dados
da NASA disponíveis no PROMISE Software Engineering Repository. / Because the increase of market competition then high level of quality applications
are required to provide automate services. In order to achieve software quality testing
is essential in the development lifecycle with the purpose of finding defect as earlier
as possible. The testing purpose is not only to find failures that can be fixed, but
improve software correctness and quality. Once software gets more complex, a
greater number of tests will be necessary to prevent or find defects. Therefore, the
more tests are designed and exercised, the more human and infrastructure
resources are needed. However, time to run the testing activities are not enough,
thus, as a result, it causes escape defects. Companies are constantly trying to find
cheaper and effective ways to software defect detection in earlier stages. In the past
years, many researchers are trying to finding mechanisms to automatically predict
these software defects. Machine learning techniques are being a research target, as
a way of finding software modules detection. Many supervised approaches are being
used with this purpose, but labeling software modules as defective or not defective to
be used in training phase is very expensive and it can make difficult machine learning
use. Considering that this work aims to analyze and compare unsupervised and
semi-supervised approaches to software module defect detection. To do so,
unsupervised methods (of anomaly detection) and semi-supervised methods using
AutoMLP and Naive Bayes algorithms were used. To evaluate and compare these
approaches, NASA datasets were used at PROMISE Software Engineering
Repository.
|
Page generated in 0.0635 seconds