141 |
Continuous Concrete Beams Reinforced With CFRP Bars.Ashour, Ashraf, Habeeb, M.N. 09 December 2015 (has links)
Yes / This paper reports the testing of three continuously and two simply supported concrete beams reinforced with carbon fibre reinforced polymer (CFRP) bars. The amount of CFRP reinforcement in beams tested was the main parameter investigated. A continuous concrete beam reinforced with steel bars was also tested for comparison purposes. The ACI 440.1R-06 equations are validated against the beam test results.
Test results show that increasing the CFRP reinforcement ratio of the bottom layer of simply and continuously supported concrete beams is a key factor in enhancing the load capacity and controlling deflection. Continuous concrete beams reinforced with CFRP bars exhibited a remarkable wide crack over the middle support that significantly influenced their behaviour. The load capacity and deflection of CFRP simply supported concrete beams are reasonably predicted using the ACI 440.1R-06 equations. However, the potential capabilities of these equations for predicting the load capacity and deflection of continuous CFRP reinforced concrete beams have been adversely affected by the de-bonding of top CFRP bars from concrete.
|
142 |
Flexural behavior of hybrid FRP/steel reinforced concrete beamsKara, Ilker F., Ashour, Ashraf, Köroğlu, Mehmet A. 01 April 2015 (has links)
No / This paper presents a numerical method for estimating the curvature, deflection and moment capacity of hybrid FRP/steel reinforced concrete beams. A sectional analysis is first carried out to predict the moment-curvature relationship from which beam deflection and moment capacity are then calculated. Based on the amount of FRP bars, different failure modes were identified, namely tensile rupture of FRP bars and concrete crushing before or after yielding of steel reinforcement. Comparisons between theoretical and experimental results of tests conducted elsewhere show that the proposed numerical technique can accurately predict moment capacity, curvature and deflection of hybrid FRP/steel reinforced concrete beams. The numerical results also indicated that beam ductility and stiffness are improved when steel reinforcement is added to FRP reinforced concrete beams. (C) 2015 Elsevier Ltd. All rights reserved,
|
143 |
Impact resistance of deflection-hardening fiber reinforced concretes with different mixture parametersBanyhussan, Q.S., Yildirim, Gurkan, Anil, O., Erdem, R.T., Ashour, Ashraf, Sahmaran, M. 31 January 2019 (has links)
Yes / The impact behavior of deflection-hardening High Performance Fiber Reinforced Cementitious Concretes (HPFRCs) was evaluated herein. During the preparation of HPFRCs, fiber type and amount, fly ash to Portland cement ratio and aggregate to binder ratio were taken into consideration. HPFRC beams were tested for impact resistance using free-fall drop-weight test. Acceleration, displacement and impact load vs. time graphs were constructed and their relationship to the proposed mixture parameters were evaluated. The paper also aims to present and verify a nonlinear finite element analysis, employing the incremental nonlinear dynamic analysis, concrete damage plasticity model and contact surface between the dropped hammer and test specimen available in ABAQUS. The proposed modelling provides extensive and accurate data on structural behavior, including acceleration, displacement profiles and residual displacement results. Experimental results which are further confirmed by numerical studies show that impact resistance of HPFRC mixtures can be significantly improved by a proper mixture proportioning. In the presence of high amounts of coarse aggregates, fly ash and increased volume of hybrid fibers, impact resistance of fiberless reference specimens can be modified in a way to exhibit relatively smaller displacement results after impact loading without risking the basic mechanical properties and deflection-hardening response with multiple cracking.
|
144 |
Eccentric compression behaviour of concrete columns reinforced with steel-FRP composite barsGe, W., Chen, K., Guan, Z., Ashour, Ashraf, Lu, W., Cao, D. 19 March 2021 (has links)
Yes / Eccentric compression behaviour of reinforced concrete (RC) columns reinforced by steel-FRP composite bars
(SFCBs) was investigated through experimental work and theoretical analyses. The tension and compression test results
show that SFCBs demonstrate a stable post-yield stiffness. The mechanical properties of the composite reinforcement
have a significant influence on eccentric compression behaviour of the reinforced concrete columns, in terms of failure
mode, crack width, deformation and bearing capacity. Formulae were also developed to discriminate failure mode and to
determine moment magnification factor, bearing capacity and crack width of the columns studied, with the theoretical
predictions being in a good agreement with the experimental results. In addition, parametric studies were conducted to
evaluate the effects of mechanical properties of reinforcement, reinforcement ratio, eccentricity, slenderness ratio, types of
reinforcement and concrete on the eccentric compression behaviour of RC columns. The results show that the
compressive performance is significantly improved by using the high performance concrete, i.e. reactive powder concrete
(RPC) and engineered cementious composites (ECC). / financial supports of the work by the National Natural Science Foundation of China (51678514), the Natural Science Foundation of Jiangsu Province, China (BK20201436), the China Postdoctoral Science Foundation (2018M642335), the Science and Technology Project of Jiangsu Construction System (2018ZD047), the Deputy General Manager Science and Technology Project of Jiangsu Province (FZ20200869), the Cooperative Education Project of Ministry of Education, China (201901273053), the Blue Project Youth Academic Leader of Colleges and Universities in Jiangsu Province (2020), the Six Talent Peaks Project of Jiangsu Province (JZ-038, 2016), the Yangzhou University Top Talents Support Project and the Jiangsu Government Scholarship for Overseas Studies.
|
145 |
Nonlinear Beam Deflection and Optical Properties of Semiconductors and SemimetalsFaryadras, Sanaz 01 January 2024 (has links) (PDF)
The nonlinear beam deflection (BD) technique is used to directly measure and time-resolve the nonlinearly-induced phase shift in a variety of materials. In this technique, a weak probe beam is spatially overlapped, while slightly displaced, with a strong excitation beam while the temporal delay is scanned. The excitation-induced index gradient, which for 3rd-order nonlinearities is proportional to the nonlinear refractive index 16 n2"> of the medium, deflects the weak probe beam. This deflection is determined using a position sensitive segmented detector after propagation to the far field. In this dissertation, we expand our previous work on BD theory to include the effects of the Gaussian spatial beam profile of the excitation, as opposed to a constant index gradient. We also explore the BD signal as we allow the spatial size and relative position of the probe with respect to the excitation beam, r, at the sample to vary to maximize the calculated signal. While the analysis requires numerical solutions, we find a simple empirical fitting function for the BD signal that allows determination of the nonlinear phase shift and thus the nonlinear refraction. We performed BD experiments at near-degenerate photon energies for various spot size ratios which resulted in very good agreement with our simulation results. In order to examine our empirical function the BD signal for various r (0.2-0.6) is measured while keeping the phase shift relatively constant. This helped us isolate the effect of spot size ratio on the BD signal. Our results showed the correct trend for the growth of BD signal as r increases, which is what is expected from our model.
We also studied nondegenerate two-photon absorption (ND-2PA) in bulk silicon. We present the results of spectroscopic pump-probe measurements of ND-2PA in silicon across the indirect-gap (1.12 eV). We observed enhancement of the 2PA coefficient as the degree of degeneracy of pump and probe photon energies increased, and the dispersion compares favorably with our recently-developed semi-empirical theoretical model for the dispersion of indirect ND-2PA in silicon.
Additionally, we experimentally investigated WTe2 which is a Weyl semimetal. Here, we prepared very thin flakes (10s of microns thick) of WTe2 and investigated the possibility of observing circular dichroism (CD) in pump-probe measurements, pumping at near IR and probing at mid-IR. Although we did not observe any CD, we believe this is because our pump photon energy is far from Weyl nodes and that we need to pump at mid-IR range.
|
146 |
Identifying High Risk Individuals in Youth Football and Evaluating Tackling TechniqueGellner, Ryan Aaron 11 May 2018 (has links)
Nearly 3.5 million kids play youth football every year in the United States, many in independent organizations with few or no rules for limiting head impact exposure in practices or competition. Studies have found potential long-term effects of repetitive head impact exposure from a young age, even in the absence of concussion. The best methods for reducing head impact exposure include a multi-pronged approach: limiting contact through rules changes, teaching proper technique for contact when it does occur, and designing equipment with better protective capabilities.
Four youth football teams were studied for one season each using helmet mounted accelerometer arrays. Head acceleration data indicated that youth teams often have a small subset of players who account for a disproportionately large number of high-risk head impacts. As few as six players (6%) accounted for over 50% of all high-risk impacts seen in practice sessions. Technique used during tackling and tackle-absorption had considerable effect on head acceleration. Both the tackler and ball carrier were found to be at greater risk for high magnitude head impacts when exhibiting poor form as defined by specific tackling recommendation criteria.
These data suggest that individualized interventions encouraging proper form, especially for a subset of impact-prone players, may be beneficial in reducing high magnitude head impact exposure for an entire youth football team. This is especially critical because a majority of high-risk impacts are experienced in practice at the youth level. Results from this work could be applied by coaching staffs in youth football leagues to increase the safety of their athletes. / MS / Nearly 3.5 million kids play youth football every year in the United States, many in independent organizations with few or no rules for limiting head impact exposure in practices or competition. Studies have found potential long-term effects of repetitive head impact exposure from a young age, even in the absence of concussion. The best methods for reducing head impact exposure include a multi-pronged approach: limiting contact through rules changes, teaching proper technique for contact when it does occur, and designing equipment with better protective capabilities.
Four youth football teams were studied for one season each using helmet mounted accelerometer arrays. Head acceleration data indicated that youth teams often have a small subset of players who account for a disproportionately large number of high-risk head impacts. As few as six players (6%) accounted for over 50% of all high-risk impacts seen in practice sessions. Technique used during tackling and tackle-absorption had considerable effect on head acceleration. Both the tackler and ball carrier were found to be at greater risk for high magnitude head impacts when exhibiting poor form as defined by specific tackling recommendation criteria.
These data suggest that individualized interventions encouraging proper form, especially for a subset of impact-prone players, may be beneficial in reducing high magnitude head impact exposure for an entire youth football team. This is especially critical because a majority of high-risk impacts are experienced in practice at the youth level. Results from this work could be applied by coaching staffs in youth football leagues to increase the safety of their athletes.
|
147 |
Deflection of Ag-atoms in an inhomogeneous magnetic fieldKheswa, Bonginkosi Vincent 12 1900 (has links)
Thesis (MSc)--Stellenbosch University, 2011. / ENGLISH ABSTRACT: In the current design of the high temperature gas cooled reactor, a small fraction of
coated fuel particles will be defective. Hence, 110Ag may be released from the fuel
spheres into the coolant gas (helium) and plate out on the cooler surfaces of the main
power system. This poses a radiation risk to operating personnel as well as general
public.
The objectives of this thesis were to design and construct an apparatus in which
silver-109 atoms may be produced and deflected in an inhomogeneous and
homogeneous magnetic field, compare experimental and theoretical results, and make
a recommendation based on the findings of this thesis to the idea of removing silver-110 atoms from the helium fluid by deflecting them with an inhomogeneous magnetic
field onto target plates situated on the inner perimeter of a helium pipe.
The experimental results for the deflection of the collimated Ag- atoms with the
round-hole collimators showed a deflection of 1.77° and 2.05° of the Ag- atoms due to
an inhomogeneous magnetic field when the target plate was positioned 13 and 30 mm
away from the magnet, respectively. These values were considerably greater than 0.01° and 0.02° that were calculated for the average velocity
of atoms, v = 500 m/s. The case where Ag- atoms were collimated with a pair of slits
and the target plate positioned 13mm away from the magnet showed the following:
An inhomogeneous magnetic field changes the rectangular shape of the beam to a
roughly elliptical shape. The beam of Ag- atoms was not split into two separate beams.
This was caused by the beam of Ag- atoms consisting of atoms travelling at different
speeds. The maximum deflection of Ag- atoms was 1.16° in the z direction and 1.12°
in the x direction. These values were also significantly greater than 0.01 mm calculated
at v = 500 m/s. This huge difference between the theoretical and experimental results
raised a conclusion that the size of each Ag deposit depended mostly on the exposure
time that was given to it. It was noticed that the beam of Ag- atoms was not split into
two separate beams, in both cases.
The conclusion was that the technique of removing Ag- atoms from the helium stream
by means of an inhomogeneous magnetic field may not be effective. This is due to the
inability of the inhomogeneous magnetic field to split the beam of Ag- atoms into two
separate beams in a vacuum of ~10-5 mbar. It would be even more difficult for an
inhomogeneous magnetic field to split the beam of Ag- atoms in helium, due to the
Ag- atoms having a shorter mean free path in helium compared to a vacuum. / AFRIKAANSE OPSOMMING: In die huidige ontwerp van die hoë temperatuur gas afgekoelde reaktor, is 'n klein fraksie van omhulde brandstof deeltjies foutief. 110Ag kan dus vrygestel word vanaf die brandstof sfere in die verkoelingsgas (helium) wat dan op die koeler oppervlaktes van die hoofkragstelsel presipiteer. Hierdie 110Ag deeltjies hou 'n bestraling risiko vir die bedryfpersoneel sowel as vir die algemene publiek in. Die doelwitte van hierdie verhandeling is eerstens om 'n apparaat te ontwerp en konstrueer wat silwer-109 atome produseer en nie-homogene en homogene magnetiese velde deflekteer,. Tweedens om die eksperimentele en teoretiese resultate met mekaar te vergelyk. Derdens om 'n aanbeveling te maak gebasseer op die bevindinge van hierdie verhandeling rakende die verwydering van silwer-110 atome uit die helium vloeistof deur hulle met 'n nie-homogene magneetveld te deflekteer op die teikenplate binne-in 'n helium pyp. Die eksperimentele resultate vir die defleksie van die gekollimeerde Ag-atome met die ronde gat kollimators toon ‘n defleksie van 1.77° en 2.05° van die Ag-atome as gevolg van ‘n nie-homogene magneetveld wanneer die teikenplaat 13mm en 30mm, onderskeidelik, vanaf die magneet geposisioneer is. Hierdie waardes is aansienlik groter as die teoretiese defleksies van 0.01° en 0.02o wat bereken is vir ‘n gemiddelde snelheid van 500 m/s vir die atome. Die geval waar Ag-atome met 'n paar splete gekollimeer is en die teikenplaat 13 mm weg van magneet geposisioneer is, is die volgende resultate verkry: 'n nie-homogene magneetveld verander die reghoekige vorm van die bondel na 'n rowwe elliptiese vorm. Die bondel Ag-atome is nie volkome twee afsonderlike bundels verdeel nie. Dit is omdat die bondel van Ag-atome bestaan uit atome wat teen verskillende snelhede beweeg. Die maksimum defleksie van Ag-atome is 1.16° in die z-rigting en 1.12° in die x-rigting. Hierdie waardes is ook aansienlik groter as 0.01° bereken teen 500 m/s. Hierdie groot verskil tussen die teoretiese en eksperimentele resultate dui daarop dat die grootte van elke Ag neerslag grootliks afhanklik is van die blootstellingstyd wat daaraan gegee is. Daar is vasgestel dat die straal van Ag-atome in beide gevalle nie in twee afsonderlike bondels verdeel nie.
Die gevolgtrekking is dat die tegniek van die verwydering van Ag-atome uit die helium stroom deur middel van 'n nie-homogene magneetveld nie effektief is nie. Dit is te wyte aan die onvermoë van die nie-homogene magneetveld om die bondel Ag-atome te verdeel in twee afsonderlike bondels in 'n vakuum van ~ 10-5 mbar. Dit sou selfs nog moeiliker vir 'n nie-homogene magnetiese veld wees om die bundel Ag-atome in helium te verdeel, weens die korter gemiddelde beskikbare pad van Ag-atome in helium wanneer dit met 'n vakuum vergelyk word.
|
148 |
Analysis of mechanical behaviour and damage of carbon fabric-reinforced composites in bendingUllah, Himayat January 2013 (has links)
Carbon fabric-reinforced polymer (CFRP) composites are widely used in aerospace, automotive and construction structures thanks to their high specific strength and stiffness. They can also be used in various products in sports industry. Such products can be exposed to different in-service conditions such as large bending deformations caused by quasi-static and dynamic loading. Composite materials subjected to such bending loads can demonstrate various damage modes - matrix cracking, delamination and, ultimately, fabric fracture. Damage evolution in composites affects both their in-service properties and performance that can deteriorate with time. Such damage modes need adequate means of analysis and investigation, the major approaches being experimental characterisation and numerical simulations. This work deals with a deformation behaviour and damage in carbon fabric-reinforced polymer (CFRP) laminates caused by quasi-static and dynamic bending. Experimental tests are carried out first to characterise the behaviour of a CFRP material under tension, in-plane shear and large-deflection bending in quasi-static conditions. The dynamic behaviour of these materials under large-deflection bending is characterised by Izod-type impact tests employing a pendulum-type impactor. A series of impact tests is performed on the material at various impact energy levels up to its fracture, to obtain a transient response of the woven CFRP laminate. Microstructural examination of damage is carried out by optical microscopy and X-ray micro computed tomography (Micro-CT). The damage analysis revealed that through thickness matrix cracking, inter-ply delaminations, intra-ply delamination such as tow debonding, and fabric fracture was the prominent damage modes. These mechanical tests and microstructural studies are accompanied by advanced numerical models developed in a commercial code Abaqus. Among those models are (i) 2D FE models to simulate experimentally observed inter-ply delamination, intra-ply fabric fracture and their subsequent interaction under quasi-static bending conditions and (ii) 3D FE models based on multi-body dynamics used to analyse interacting damage mechanisms in CFRP under large-deflection dynamic bending conditions. In these models, multiple layers of bilinear cohesive-zone elements are placed at the damage locations identified in the Micro CT study. Initiation and progression of inter-laminar delamination and intra-laminar ply fracture are studied by employing cohesive elements. Stress-based criteria are used for damage initiation while fracture-mechanics techniques are employed to capture its progression in composite laminates. The developed numerical models are capable to simulate the studied damage mechanisms as well as their subsequent interaction observed in the tests and microstructural damage analysis. In this study, a novel damage modelling technique based on the cohesive-zone method is proposed for analysis of interaction of various damage modes, which is more efficient than the continuum damage mechanics approach for coupling between failure modes. It was observed that the damage formation in the specimens was from the front to the back at the impact location in the large-deflection impact tests, unlike the back-to-front one in drop-weight tests. The obtained results of simulations showed a good agreement with experimental data, thus demonstrating that the proposed methodology can be used for simulations of discrete damage mechanisms and their interaction during the ultimate fracture of composites in bending. The main outcome of this thesis is a comprehensive experimental and numerical analysis of the deformation and fracture behaviours of CFRP composites under large-deflection bending caused by quasi-static and dynamic loadings. Recommendations on further research developments are also suggested.
|
149 |
Feedback Control of Robotic Friction Stir WeldingDe Backer, Jeroen January 2014 (has links)
The Friction Stir Welding (FSW) process has been under constant developmentsince its invention, more than 20 years ago. Whereas most industrial applicationsuse a gantry machine to weld linear joints, there are applications which consistof complex three-dimensional joints, requiring more degrees of freedom fromthe machines. The use of industrial robots allows FSW of materials alongcomplex joint lines. There is however one major drawback when using robotsfor FSW: the robot compliance. This results in vibrations and insufficient pathaccuracy. For FSW, path accuracy is important as it can cause the welding toolto miss the joint line and thereby cause welding defects.The first part of this research is focused on understanding how welding forcesaffect the FSW robot accuracy. This was first studied by measuring pathdeviation post-welded and later by using a computer vision system and laserdistance sensor to measure deviations online. Based on that knowledge, a robotdeflection model has been developed. The model is able to estimate thedeviation of the tool from the programmed path during welding, based on thelocation and measured tool forces. This model can be used for online pathcompensation, improving path accuracy and reducing welding defects.A second challenge related to robotic FSW on complex geometries is thevariable heat dissipation in the workpiece, causing great variations in the weldingtemperature. Especially for force-controlled robots, this can lead to severewelding defects, fixture- and machine damage when the material overheats.First, a new temperature method was developed which measures thetemperature at the interface of the tool and the workpiece, based on the thermoelectriceffect. The temperature information is used as input to a closed-looptemperature controller. This modifies primarily the rotational speed of the tooland secondarily the axial force. The controller is able to maintain a stablewelding temperature and thereby improve the weld quality and allow joining ofgeometries which were impossible to weld without temperature control.Implementation of the deflection model and temperature controller are twoimportant additions to a FSW system, improving the process robustness,reducing the risk of welding defects and allowing FSW of parts with highlyvarying heat dissipation.
|
150 |
Field performance of geogrid reinforced low-volume pavementsJoshi, Rutuparna Vidyadhar 05 November 2010 (has links)
For the past three decades, geosynthetics have been recognized as materials that can significantly improve the performance of pavements on weak subgrade. Pavements exhibit non-linear elasto-plastic behavior. The addition of geosynthetics is undoubtedly beneficial. This being said, researchers have concentrated more on lower life cycle cost and high benefit-cost ratio whereas much less attention has been given to the complex behavior of the reinforced pavement system. Comprehension of the short-term and long-term field performance of reinforced pavements under continued traffic and cyclic environmental loading has remained unexplored. There is empirical evidence indicating quantitative benefits of reinforced versus unreinforced pavement structure. However, quantification of the relative benefits of different types of reinforcement like geogrids and geotextiles lacks information. Further, evaluation of the benefits and comparison of chemical stabilization in the form of lime treatment with mechanical stabilization in the form of reinforcement for pavements on soft soils has received lack of attention.
In view of this, full-scale instrumented reinforced and lime treated pavement sections with different schemes were studied.
Regular Falling Weight Deflectometer (FWD) testing was conducted in a Farm-to-Market Road, in Grimes County, Texas. Three different geosynthetic products were used for base reinforcement and lime treatment was used for subbase stabilization. Deflection measurements for 9 field trips in 3.5 years were evaluated. Modified deflection basin parameters (DBPs) were defined to typically identify layer properties and were used to measure the relative damage to the base, subbase and subgrade for different sections. A modified Base Damage Index (BDI) and a modified Base Curvature Index (BCI) were defined as a part of this study to capture the benefit of reinforced base and lime stabilized subbase respectively. The variation in the DBPs over three periods of wetting and drying along with explanation of the observed trends forms a part of this research.
In addition, a number of condition surveys were performed, during 3 years, to visually identify distresses in various sections. A unique distress quantification technique was developed for measuring deterioration of the pavement sections in terms of the observed distresses and FWD measurements. With this, an index of pavement performance was developed.
Thus, the FWD deflection data analyses complemented by visual observation, reveals important information on performance of different geosynthetics with the same base course. Analysis of the field performance of the multiple experimental sections throws light on the relative merits of base reinforcement against lime stabilization. / text
|
Page generated in 0.0937 seconds