• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 163
  • 35
  • 20
  • 20
  • 20
  • 20
  • 20
  • 20
  • 8
  • 4
  • 3
  • 2
  • Tagged with
  • 301
  • 301
  • 50
  • 42
  • 37
  • 30
  • 27
  • 26
  • 25
  • 24
  • 24
  • 24
  • 23
  • 21
  • 21
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
271

Finite element-based failure models for carbon/epoxy tape composites

Seon, Guillaume 13 April 2009 (has links)
Laminated carbon/epoxy composite structures are increasingly used in the aerospace industries. Low weight, elastic tailoring, and high durability make the composite materials well suited for replacement of conventional metallic structures. However the difficulty to capture structural failure phenomena is a significant barrier to more extensive use of laminated composites. Predictions are challenging because matrix (resin) dominated failure mechanisms such as delaminations and matrix cracking contribute to the structural failure in addition to fiber-dominated failures. A key to rigorous failure predictions for composites is availability of measurements to quantify structural model parameters including matrix-dominated stress-strain relations and failure criteria. Novel techniques for measurement of nonlinear interlaminar constitutive properties in tape composites have been recently developed at Georgia Institute of Technology. Development of methods for accurate predictions of failure in carbon/epoxy tape laminate configurations with complex lay-ups is the main focus of this work. Failures through delamination and matrix cracking are considered. The first objective of this effort is to implement nonlinear interlaminar shear stress-strain relations for IM7/8552 carbon/epoxy tape in ABAQUS finite element models and validate structural delamination failure predictions with tests. Test data for composite configurations with wavy fibers confirm that nonlinear interlaminar shear stress-strain response enables accurate failure prediction. The problem of the presence of porosity and its influence on failure was noted. The second objective is to assess the ability to simulate initiation and propagation of matrix-ply cracking. Failure models for IM7/8552 carbon/epoxy tape open-hole tensile coupons are built and validated.
272

Mathematical and physical modelling of crack growth near free boundaries in compression

Pant, Sudeep Raj January 2005 (has links)
[Truncated abstract] The fracture of brittle materials in uniaxial compression is a complex process with the development of cracks generated from initial defects. The fracture mechanism and pattern of crack growth can be altered considerably by the presence of a free surface. In proximity of a free surface, initially stable cracks that require an increase in the load to maintain the crack growth can become unstable such that the crack growth maintains itself without requiring further increase in the load. This leads to a sudden relief of accumulated energy and, in some cases, to catastrophic failures. In the cases of rock and rock mass fracturing, this mechanism manifests itself as skin rockbursts and borehole breakouts or as various non-catastrophic forms of failure, e.g. spalling. Hence, the study of crack-boundary interaction is important in further understanding of such failures especially for the purpose of applications to resource engineering. Two major factors control the effect of the free boundary: the distance from the crack and the boundary shape. Both these factors as well as the effect of the initial defect and the material structure are investigated in this thesis. Three types of boundary shapes - rectilinear, convex and concave - are considered. Two types of initial defects - a circular pore and inclined shear cracks are investigated in homogeneous casting resin, microheterogeneous cement mixes and specially fabricated granulate material. The preexisting defects are artificially introduced in the physical model by the method of inclusion and are found to successfully replicate the feature of pre-existing defects in terms of load-deformation response to the applied external load. It is observed that the possibility of crack growth and the onset of unstable crack growth are affected by the type of initial defect, inclination of the initial crack, the boundary shape and the location of the initial defect with respect to the boundary. The initial defects are located at either the centre or edge of the sample. The stresses required for the wing crack initiation and the onset of unstable crack growth is highest for the initial cracks inclined at 35° to the compression axis, lowest at 45° and subsequently increases towards 60° for all the boundary shapes and crack locations. In the case of convex boundary, the stress of wing crack initiation and the stress of unstable crack growth are lower than for the case of rectilinear and concave boundary for all the crack inclinations and crack locations. The crack growth from a pre-existing crack in a sample with concave boundary is stable, requiring stress increase for each increment of crack growth. The stress of unstable crack growth for the crack situated at the edge of the boundary is lower than the crack located at the centre of the sample for all the crack inclinations and boundary shapes.
273

Topology optimisation of structures exposed to large (non-linear) deformations

Christensen, J. January 2015 (has links)
PhD by portfolio. Research aim: To investigate if topology optimisation can be used for the development of mechanical structures exposed to large (non-linear) deformations. Research objectives: 1. Analyse and critically evaluate the potential for using state of the art commercially available Finite Element software (and associated topology optimisation algorithms) for topology optimisation of structures exposed to large-deformations. 2. Based on 1 (where feasible) suggest, develop and critically appraise opportunities, methodologies and tools for enhancing the accuracy and precision of current state of the art topology optimisation algorithms for non-linear applications. 3. Based on the outcomes of 1 and 2 define / refine and integrate a topology optimisation algorithm / methodology with enhanced levels of accuracy for structures exposed to large (non-linear) deformations. 4. Critically analyse and assess the outcomes of the tool developed in 3 to competing algorithms and “sound engineering judgement” using case-studies and objectively evaluate the potential for further development/refinement of the proposed algorithm/methodology.
274

Molecular Dynamics Simulations of the Mechanical Deformation Behavior of Face-Centered Cubic Metallic Nanowires

Heidenreich, Joseph David 05 May 2010 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Nanoscale materials have become an active area of research due to the enhanced mechanical properties of the nanomaterials in comparison to their respective bulk materials. The effect that the size and shape of a nanomaterial has on its mechanical properties is important to understand if these materials are to be used in engineering applications. This thesis presents the results of molecular dynamics (MD) simulations on copper, gold, nickel, palladium, platinum, and silver nanowires of three cross-sectional shapes and four diameters. The cross-sectional shapes investigated were square, circular, and octagonal while the diameters varied from one to eight nanometers. Due to a high surface area to volume ratio, nanowires do not have the same atomic spacing as bulk materials. To account for this difference, prior to tensile loading, a minimization procedure was applied to find the equilibrium strain for each structure size and shape. Through visualization of the atomic energy before and after minimization, it was found that there are more than two energetically distinct areas within the nanowires. In addition, a correlation between the anisotropy of a material and its equilibrium strain was found. The wires were then subjected to a uniaxial tensile load in the [100] direction at a strain rate of 108 s-1 with a simulation temperature of 300 K. The embedded-atom method (EAM) was employed using the Foiles potential to simulate the stretching of the wires. The wires were stretched to failure, and the corresponding stress-strain curves were produced. From these curves, mechanical properties including the elastic modulus, yield stress and strain, and ultimate strain were calculated. In addition to the MD approach, an energy method was applied to calculate the elastic modulus of each nanowire through exponential fitting of an energy function. Both methods used to calculate Young’s modulus qualitatively gave similar results indicating that as diameter decreases, Young’s modulus decreases. The MD simulations were also visualized to investigate the deformation and yield behavior of each nanowire. Through the visualization, most nanowires were found to yield and fail through partial dislocation nucleation and propagation leading to {111} slip. However, the 5 nm diameter octagonal platinum nanowire was found to yield through reconstruction of the {011} surfaces into the more energetically favorable {021} surfaces.
275

Numerical simulation of damage and progressive failures in composite laminates using the layerwise plate theory

Reddy, Yeruva S. 07 June 2006 (has links)
The failure behavior of composite laminates is modeled numerically using the Generalized Layerwise Plate Theory (GLPT) of Reddy and a progressive failure algorithm. The Layerwise Theory of Reddy assumes a piecewise continuous displacement field through the thickness of the laminate and therefore has the ability to capture the interlaminar stress fields near the free edges and cut outs more accurately. The progressive failure algorithm is based on the assumption that the material behaves like a stable progressively fracturing solid. A three-dimensional stiffness reduction scheme is developed and implemented to study progressive failures in composite laminates. The effect of various parameters such as out-of-plane material properties, boundary conditions, and stiffness reduction methods on the failure stresses and strains of a quasi-isotropic composite laminate with free edges subjected to tensile loading is studied. The ultimate stresses and strains predicted by the Generalized Layerwise Plate Theory (GLPT) and the more widely used First Order Shear Deformation Theory (FSDT) are compared with experimental results. The predictions of the GLPT are found to be in good agreement with the experimental results both qualitatively and quantitatively, while the predictions of FSDT are found to be different from experimental results both qualitatively and quantitatively. The predictive ability of various phenomenological failure criteria is evaluated with reference to the experimental results available in the literature. The effect of geometry of the test specimen and the displacement boundary conditions at the grips on the ultimate stresses and strains of a composite laminate under compressive loading is studied. The ultimate stresses and strains are found to be quite sensitive to the geometry of the test specimen and the displacement boundary conditions at the grips. The degree of sensitivity is observed to depend strongly on the lamination sequence. The predictions of the progressive failure algorithm are in agreement with the experimental trends. Finally, the effect of geometric nonlinearity on the first-ply and ultimate failure loads of a composite laminate subjected to bending load is studied. The geometric nonlinearity is taken in to account in the von Kármán sense. It is demonstrated that the nonlinear failure loads are quite different from the linear failure loads, depending on the lamination sequence, boundary conditions, and span-to-depth ratio of the test specimen. Further, it is shown that the First order Shear Deformation Theory (FSDT) and the Generalized Layerwise Plate Theory (GLPT) predict qualitatively different results. / Ph. D.
276

Simulation of Thermo-mechanical Deformation in High Speed Rolling of Long Steel Products

Biswas, Souvik 27 October 2003 (has links)
"A Java pre- and post-processing graphical user-oriented interface has been developed by the authors to aid a mill engineer with little or no finite element experience throughout the analysis process of the finishing rolling stands. A case study is presented that uses the commercial finite element code ABAQUS/Explicit to predict roundness and tolerance customer requirements. Other parameters that are determined include spread, crosssectional area, percentage reduction in area, incremental plastic strain, total plastic strain and roll force. All parameters are compared to theoretical models and some are compared to full-scale mill testing."
277

Deformation Micro-mechanisms of Simple and Complex Concentrated FCC Alloys

Komarasamy, Mageshwari 12 1900 (has links)
The principal objective of this work was to elucidate the effect of microstructural features on the intrinsic dislocation mechanisms in two FCC alloys. First alloy Al0.1CoCrFeNi was from a new class of material known as complex concentrated alloys, particularly high entropy alloys (HEA). The second was a conventional Al-Mg-Sc alloy in ultrafine-grained (UFG) condition. In the case of HEA, the lattice possess significant lattice strain due to the atomic size variation and cohesive energy differences. Moreover, both the lattice friction stress and the Peierls barrier height are significantly larger than the conventional FCC metals and alloys. The experimental evidences, so far, provide a distinctive identity to the nature and motion of dislocations in FCC HEA as compared to the conventional FCC metals and alloys. Hence, the thermally activated dislocation mechanisms and kinetics in HEA has been studied in detail. To achieve the aim of examining the dislocation kinetics, transient tests, both strain rate jump tests and stress relaxation tests, were conducted. Anomalous behavior in dislocation kinetics was observed. Surprisingly, a large rate sensitivity of the flow stress and low activation volume of dislocations were observed, which are unparalleled as compared to conventional CG FCC metals and alloys. The observed trend has been explained in terms of the lattice distortion and dislocation energy framework. As opposed to the constant dislocation line energy and Peierls potential energy (amplitude, ΔE) in conventional metals and alloys, both line energy and Peierls potential undergo continuous variation in the case of HEA. These energy fluctuations have greatly affected the dislocation mobility and can be distinctly noted from the activation volume of dislocations. The proposed hypothesis was tested by varying the grain size and also the test temperature. Activation volume of dislocations was a strong function of temperature and increased with temperature. And the reduction in grain size did not affect the dislocation mechanisms and kinetics. This further bolstered the hypothesis. The second part deals with deformation characteristics of Al-Mg-Sc alloy. The microstructure obtained from the severe plastic deformation (SPD) techniques differ in dislocation density, grain/cell size, and in the grain boundary character distribution. Therefore, it is vital to understand the deformation behavior of the UFG materials produced by various SPD techniques, as the microstructural features basically control the deformation mechanisms. In this study, a detailed analysis was made to understand the deformation mechanisms operative in various regimes of a stress-strain in UFG Al-Mg-Sc alloy produced via friction stir processing. The stress-strain curves exhibited serrations from the onset of yielding to the point of sample failure. The serration amplitude and frequency was higher in UFG material as compared to CG material. Furthermore, the microstructural features that result in the serrated flow were investigated along with the avalanche characteristics. The presence of both ultrafine grains and Al3Sc precipitates were the necessary conditions to reach the critical stress required to push the grain boundary into a critical state to set off an avalanche. The microstructural conditions that did not satisfy both the requirements did not exhibit deep serrations.
278

Towards An Advanced 14-Node Brick Element For Sheet Metal Forming

Chandan, Swet 07 1900 (has links)
Sheet metal forming is used in a wide range of industrial processes ranging from tube manufacturing to automobile and aviation industry. It includes processes like stamping, bending, stretching, drawing and wheeling. In the past few years materials for sheet metal forming and, technology have improved a lot. The improved materials have higher strength and more ductility than conventional sheet steel and therefore they have to be worked differently. For such steels conventional methods can not be applied totally. So there is a need for constant improvement in technology. Trial and error method currently in use increases lead time and is not economic also. To overcome the problems, use of simulation software in metal forming processes has increased significantly. The rapid development of software technology accompanied with lower cost computer hardware have enabled many manufacturing operations to be modeled cost-effectively that only a few years ago would have been considered impractical. However there are some difficulties in simulation of sheet metal forming process. For example it is never an easy task to select the correct software for a particular process. Various authors ascribe different causes for the difficulties. Among them the prominent ones are lacunae in elasto-plastic modeling, material behaviour, involved complexities and a lack of good elements. Apart from that the demands of sheet metal processes are increasing both with respect to the tolerance requirements of the finished part and with regard to geometric complexity of the part to be formed. A few years ago finite elements have been developed using Papcovitch-Neuber solutions of the Navier equation for the displacement function. Among these elements PN5X1 has the abilities to predict both displacements and stresses accurately. And recently the element is extended to include material nonlinearity and is working well for the small deformation range. To use this element for sheet metal forming it is necessary that the element should predict correct results for large deformations. In the present work we have further extended this element for large displacements and large rotation. In the literature there are various algorithms recommended for use with large deformation. Among them we have selected a suitable algorithm and verified its usefulness. First we have taken a simple truss and applied loads to cause large deflection. We observe adequate convergence with the chosen algorithm and then we extend it to PN5X1. in large deformation analysis, equilibrium is computed about the deformed shape. In the chosen algorithm we apply incremental loading and within each load step loop we iterate for equilibrium. We ensure error free solution (equilibrium) before additional loading is introduced. With the help of flowchart these processes have been depicted. A computer program in C, based on the above incremental method and equilibrium check has been written. For the purpose of verification of the program, we have solved some benchmark tests. We start with linear cases and then attempt a number of geometric nonlinear problems like- cantilever subjected to end shear, pinched cylinder with open end etc. We have also included the classical benchmark problem of the cantilever subjected to end moment. The present algorithm gives solutions which are in excellent agreement with those reported in the literature. Finally, we look at some aspects of the problem which require further investigation.
279

Some Critical Issues Pertaining To Deformation Texture In Close-Packed Metals And Alloys : The Effect Of Grain Size, Strain Rate And Second Phase

Prakash, Gurao Nilesh 07 1900 (has links) (PDF)
Crystallographic texture in polycrystalline materials are known to play an important role in tailoring suitable properties for various technological applications. In addition, the evolution of texture provides a profound basis to develop scientific understanding of physical processes occurring in the material during deformation and annealing. Between the two, the understanding of deformation texture is much broader. However, certain issues pertaining to the evolution of deformation texture evolution are yet to be explored or not uniquely agreed upon. A few notable examples are the effects of extreme grain sizes and strain rates. Moreover, most of the studies are pertaining to single phase metals and alloys. While many engineering alloys consist of two phase microstructures, the effect of second phase in the microstructure on the evolution of texture in the individual phases has not been studied in a comprehensive manner. The present thesis is an attempt to addresses these issues in a more generic manner. The studies have been specifically aimed at examining the aforesaid issues in the close packed Face Centre Cubic (FCC) and Hexagonal Close Packed (HCP) metals and alloys. In brief, this thesis addresses the following problems pertaining to deformation texture: (i) the effect of extreme grain sizes, (ii) the effect of extreme strain rates and (iii) the effect of a second ductile phase. Chapter 1 of the thesis gives a detailed survey of literature pertaining to the evolution of deformation textures in different metals and alloys, while chapter 2 includes the details of the experimental techniques and simulation procedures, which are mostly common for the entire work. The issue of grain size is addressed in chapter 3. In the present investigation, the evolution of deformation texture in nickel (FCC) and titanium (HCP) with the extreme grain sizes (nanometre and millimetre) has been studied. Nanocrystalline nickel with the grain size ~ 20 nm was obtained by pulse electro-deposition while the other extreme of the grain size in nickel was obtained by annealing of a cold rolled sheet at 1373 K. The rolling texture in nanocrystalline nickel had a higher volume fraction of Brass component than in nickel with normal grain size. These results have been explained on the basis of inhibition of cross slip in small grain sizes and the operation of planar slip. This has been validated by viscoplastic self-consistent simulations. The texture of coarse grain nickel samples (typified as oligocrystalline, owing to the lesser number of grains in the thickness direction) also had higher Brass component like the nanocrystalline sample. A detailed analysis was performed by examining misorientation development in the grain interior and in the vicinity of the grain boundaries. The similarity at the two extreme length scales has been explained on the basis of lower “Grain Boundary Affected Zone” at the extreme length scales. To examine the effect of grain size in the case of HCP materials, commercially pure titanium with ultra-fine (500 nm) and normal grain size (~50 μm), was investigated. A monotonic evolution of texture was observed in the former, which has been attributed to the absence of twinning, a situation that could arise due to the lack of coordinated movement of twinning partials in the sub-micron grain size regime. Thus, a reasonable understanding of the evolution of deformation texture in hitherto unexplored regime of grain sizes was developed for the two materials. The chapter 4 of the thesis is dedicated to the study of strain rate effects in both FCC and HCP materials. The issue of strain rate has been addressed by two ways: (a) deforming the materials at extreme strain rates, namely 10-3 s-1 to 10+3 s-1 under compression up to a reasonable strain, and (b) deforming the materials under torsion within a reasonable range of strain rates, but up to large strains. In this case, in addition to nickel, copper was also investigated owing to the different strain hardening behaviour of the two materials. The compression texture in nickel and copper was characterized by the presence of <101> component at low strain rates. At high strain rate, ~10+3 s-1, there was a decrease in the intensity of the <101> component for nickel but it strengthened for copper. This has been explained on the basis of continuous dynamic recrystallization in copper. The torsion texture evolution in nickel and copper was similar at low strain rate (10-3 s-1) and was characterized by the presence of important shear texture components. At high strain rate (1 s-1), texture weakened for nickel, while for copper a rotated cube component was observed which has been attributed to dynamic recrystallization. The effect of strain rate was studied more comprehensively in hexagonal titanium by adding one more variable, that is, the initial texture. Extreme strain rates were imparted using static and dynamic compression tests. It was found that different initial textures led to different mechanical response in terms of yield strength and strain hardening as well as microstructural response in terms of twin fractions. The samples deformed at high strain rate showed increased twinning that led to some scatter in the texture components compared to low strain rate deformed samples. VPSC simulations were able to successfully capture the evolution of texture as well as microstructural evolution in terms of twin activity in the deformed samples at the extreme strain rates. Torsion tests on titanium at different strain rates indicated evolution of inhomogeneous nature of fibre texture components with increase in strain rate. Thus, weakening of texture was observed irrespective of the strain path (compression or torsion) and crystal structure (FCC or HCP) unless additional restoration mechanism like recrystallization (continuous or discontinuous) intervened. In chapter 5, the evolution of rolling texture in two phase FCC + BCC (Ni-Fe-Cr alloys) and HCP + BCC (Ti-13Nb-13Zr ) alloys has been studied. This study was aimed at examining the effect of second deforming phase on the texture evolution in the primary phase. The effect of various parameters like volume fraction and morphology of the second phase on deformation texture evolution was studied experimentally as well as by VPSC simulations. A reduction in the Brass component of texture was observed in the austenite phase due to the presence of harder ferrite phase while a characteristic rolling texture evolved in the ferrite phase. It has been established that the softer austenite phase carried maximum strain at low volume fractions of ferrite while the harder ferrite phase carried the maximum strain at higher volume fractions of ferrite. In case of the two phase HCP+BCC alloy Ti-13Nb-13Zr, both the hexagonal α and the cubic β phases showed a characteristic rolling texture irrespective of two different morphologies. For both the equiaxed and colony microstructures, the softer β phase carried the maximum strain. VPSC simulations were able to model the deformation texture evolution as well as microstructural parameters like strain partitioning and twin fraction satisfactorily for both the microstructural conditions. It was found that the deformation mechanism in one phase could be affected by the presence of the second phase and that a characteristic change in deformation texture could be produced in the presence of the second phase. Thus, a comprehensive perspective has been developed pertaining to the evolution of texture in FCC and HCP phases in the presence of a second ductile phase. The overall findings of the three investigations carried out for the thesis are summarised in chapter 6.
280

Mechanical behavior of carbon nanotube forests under compressive loading

Pour Shahid Saeed Abadi, Parisa 09 April 2013 (has links)
Carbon nanotube (CNT) forests are an important class of nanomaterials with many potential applications due to their unique properties such as mechanical compliance, thermal and electrical conductance, etc. Their deformation and failure in compression loading is critical in any application involving contact because the deformation changes the nature of the contact and thus impacts the transfer of load, heat, and charge carriers across the interface. The micro- and nano-structure of the CNT forest can vary along their height and from sample to sample due to different growth parameters. The morphology of CNTs and their interaction contribute to their mechanical behavior with change of load distribution in the CNT forest. However, the relationship is complicated due to involvement of many factors such as density, orientation, and entanglement of CNTs. None of these effects, however, are well understood. This dissertation aims to advance the knowledge of the structure-property relation in CNT forests and find methodologies for tuning their mechanical behavior. The mechanical behavior of CNT forests grown with different methodologies is studied. Furthermore, the effects of coating and wetting of CNT forests are investigated as methods to tailor the degree of interaction between CNTs. In situ micro-indentation of uncoated CNT forests with distinct growth-induced structures are performed to elucidate the effects of change of morphology along the height of CNT forests on their deformation mechanism. CNT aerial density and tortuosity are found to dictate the location of incipient deformation along height of CNT forests. Macro-compression testing of uncoated CNT forests reveals mechanical failure of CNT forests by delamination at the CNT-growth substrate. Tensile loading of CNT roots due to post-buckling bending of CNTs is proposed to be the cause of this failure and simple bending theory is shown to estimate the failure load to be on the same order of magnitude as experimental measurements. Furthermore, delamination is observed to occur in the in situ micro-indentation of CNT forests coated with aluminum on the top surface, which demonstrates the role of the mechanical constraints within the CNT forest in the occurrence of delamination at the CNT-substrate interface. In addition, this dissertation explores the mechanical behavior of CNT forests coated conformally (from top to bottom) with alumina by atomic layer deposition. In situ micro-indentation testing demonstrates that the deformation mechanism of CNT forests does not change with a thin coating (2 nm) but does change with a sufficiently thick coating (10 nm) that causes fracturing of the hybrid nanotubes. Ex situ flat punch and Berkovich indentations reveal an increase in stiffness of the CNT forests that are in range with those predicted by compression and bending theories. An increase in the recoverability of the CNTs is also detected. Finally, solvent infiltration is proposed as a method of decreasing stiffness of CNT forests and changing the deformation mechanism from local to global deformations (i.e., buckling in the entire height). Presence of solvents between CNTs decreases the van der Waals forces between them and produces CNT forests with lower stiffness. The results demonstrate the effect of interaction between CNTs on the mechanical behavior. This dissertation reveals important information on the mechanical behavior of CNT forests as it relates to CNT morphology and tube-to-tube interactions. In addition, it provides a framework for future systematic experimental and theoretical investigations of the structure-property relationship in CNT forests, as well as a framework for tuning the properties of CNT forests for diverse applications.

Page generated in 0.1144 seconds