• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The existence and regularity of multiple solutions for a class of infinitely degenerate elliptic equations

Chen, Hua, Li, Ke January 2007 (has links)
Let X = (X1,.....,Xm) be an infinitely degenerate system of vector fields, we study the existence and regularity of multiple solutions of Dirichelt problem for a class of semi-linear infinitely degenerate elliptic operators associated with the sum of square operator Δx = ∑m(j=1) Xj* Xj.
2

Mixed framework for Darcy-Stokes mixtures

Taicher, Abraham Levy 09 February 2015 (has links)
We consider the system of equations arising from mantle dynamics introduced by McKenzie (J. Petrology, 1985). In this multi-phase model, the fluid melt velocity obeys Darcy's law while the deformable "solid" matrix is governed by a highly viscous Stokes equation. The system is then coupled through mass conservation and compaction relations. Together these equations form a coupled Darcy-Stokes system on a continuous single-domain mixture of fluid and matrix. The porosity φ, representing the relative volume of fluid melt to the bulk volume, is assumed to be much smaller than one. When coupled with solute transport and thermal evolution in a time-dependent problem, the model transitions dynamically from a non-porous single phase solid to a two-phase porous medium. Such mixture models have an advantage for numerical approximation since the free boundary between the one and two-phase regions need not be determined explicitly. The equations of mantle dynamics apply to a wide range of applications in deep earth physics such as mid-ocean ridges, subduction zones, and hot-spot volcanism, as well as to glacier dynamics and other two-phase flows in porous media. Mid-ocean ridges form when viscous corner flow of the solid mantle focuses fluid toward a central ridge. Melt is believed to migrate upward until it reaches the lithospheric "tent" where it then moves toward the ridge in a high porosity band. Simulation of this physical phenomenon required confidence in numerical methods to handle highly heterogeneous porosity as well as the single-phase to two-phase transition. In this work we present a standard mixed finite element method for the equations of mantle dynamics and investigate its limitations for vanishing porosity. While stable and optimally convergent for porosity bounded away from zero, the stability estimates we obtain suggest, and numerical results show, the method becomes unstable as porosity approaches zero. Moreover, the fluid pressure is no longer a physical variable when the fluid phase disappears and thus is not a good variable for numerical methods. Inspired by the stability estimates of the standard method, we develop a novel stable mixed method with uniqueness and existence of solutions by studying a linear degenerate elliptic sub-problem akin to the Darcy part of the full model: [mathematical equation], where a and b satisfy a(0)=b(0)=0 and are otherwise positive, and the porosity φ ≥ 0 may be zero on a set of positive measure. Using scaled variables and mild assumptions on the regularity of φ, we develop a practical mass-conservative method based on lowest order Raviart-Thomas finite elements. Finally, we adapt the numerical method for the sub-problem to the full system of equations. We show optimal convergence for sufficiently smooth solutions for a compacting column and mid-ocean ridge-like corner flow examples, and investigate accuracy and stability for less regular problems / text
3

Some degenerate elliptic systems and applications to cusped plates

Jaiani, George, Schulze, Bert-Wolfgang January 2004 (has links)
The tension-compression vibration of an elastic cusped plate is studied under all the reasonable boundary conditions at the cusped edge, while at the noncusped edge displacements and at the upper and lower faces of the plate stresses are given.
4

EquaÃÃes diferenciais elÃpticas nÃo-variacionais, singulares/degeneradas : uma abordagem geomÃtrica / Nonvariational elliptic differential equations, singular/degenerate: a geometric approach

DamiÃo JÃnio GonÃalves AraÃjo 07 December 2012 (has links)
CoordenaÃÃo de AperfeiÃoamento de Pessoal de NÃvel Superior / Conselho Nacional de Desenvolvimento CientÃfico e TecnolÃgico / Neste presente trabalho, faremos o estudo de importantes propriedades geomÃtricas e analÃticas de soluÃÃes de equaÃÃes diferenciais parciais elÃpticas totalmente nÃo-lineares do tipo: singulares e degeneradas. O estudo de processos de combustÃo que se degeneram ao longo do conjunto de anulamento da densidade de um gÃs, um caso particular de problemas do tipo "quenching", apresentam em sua modelagem equaÃÃes singulares que estÃo descritas neste trabalho. Nesta primeira parte iremos obter propriedades de uma soluÃÃo minimal, que vÃo desde o controle completo Ãtimo, atà a obtenÃÃo de estimativas de Hausdorff da fronteira livre singular. Por fim, iremos obter a regularidade Ãtima de soluÃÃes de equaÃÃes em que suas propriedades de difusÃo(elipticidade) se deterioram na ordem de uma potÃncia do seu gradiente ao longo do conjunto em que tal taxa de variaÃÃo se anula. / In this work we study important geometric and analytic properties to solutions of fully nonlinear elliptic partial differential equations, both singular and degenerate types. The study of combustion processes that degenerate along the null-set of the density of a gas, a particular case of quenching problems, present in their modeling, equations described in this work. In this first part we obtain properties of a minimal solution, since the complete optimal control until the Hausdorff estimates of the singular free boundary. Ultimately, we obtain the optimal regularity to equation solutions where their diffusion property (elipticity) deterorate in a power of their gradient along the set where such rate of variation nullifies.
5

[pt] TEORIA DE REGULARIDADE PARA MODELOS COMPLETAMENTE NÃO-LINEARES / [en] TOWARDS A REGULARITY THEORY FOR FULLY NONLINEAR MODELS

PEDRA DARICLEA SANTOS ANDRADE 28 December 2020 (has links)
[pt] Neste trabalho examinamos equações completamente não-lineares em dois contextos distintos. A princípio, estudamos jogos de campo médio completamente não-lineares. Aqui, examinamos ganhos de regularidade para as soluções do problema, existência de soluções, resultados de relaxação e aspectos particulares de um example explícito. A segunda metade da tese dedica-se à regularidade ótima das soluções de um modelo completamente não-linear que degenera-se com respeito ao gradiente das soluções. A pergunta fundamental subjacente a ambos os tópicos diz respeito aos efeitos da elipticidade sobre propriedades intrínsecas das soluções de equações não-lineares. Mais precisamente, no caso dos jogos de campo médio, a elipticidade parece magnificada pelos efeitos do acoplamento, enquanto no caso dos problemas degenerados, esta quantidade colapsa em sub-regiões do domínio, dando origem a delicados fenômenos. Nossa análise inclui um breve contexto da inserção do trabalho. / [en] In this thesis, we examine fully nonlinear problems in two distinct contexts. The first part of our work focuses on fully nonlinear mean-field games. In this context, we examine gains of regularity, the existence of solutions, relaxation results, and particular aspects of a one-dimensional problem. The second half of the thesis concerns a (sharp) regularity theory for fully nonlinear equations degenerating with respect to the gradient of the solutions. The fundamental question underlying both topics regards the effects of ellipticity on the intrinsic properties of solutions to nonlinear equations. To be more precise, in the case of mean-field game systems, ellipticity seems to be magnified through the coupling structure. On the other hand, in the degenerate setting, ellipticity collapses, giving rise to intricate regularity phenomena. Our analysis is preceded by some context on both topics.

Page generated in 0.32 seconds