• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 320
  • 126
  • 37
  • 30
  • 18
  • 17
  • 8
  • 8
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • Tagged with
  • 686
  • 116
  • 90
  • 81
  • 71
  • 70
  • 67
  • 59
  • 56
  • 52
  • 52
  • 50
  • 49
  • 47
  • 41
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
191

Development of an amine dehydrogenase

Abrahamson, Michael J. 13 August 2012 (has links)
Biocatalysts are increasingly prevalent in the large-scale synthesis of enantiomerically pure compounds. However, many sought-after reactions lack a suitable enzymatic production route. This work describes the development of a novel amine dehydrogenase through the application of directed evolution altering the substrate specificity of an existing leucine dehydrogenase scaffold. Eleven rounds of directed evolution completely altered the enzyme’s specificity and successfully created amination activity. The resulting amine dehydrogenase asymmetrically catalyzes methyl isobutyl ketone and free ammonia to 1, 3-dimethyl butyl amine. The enantioselectivity of the wild-type enzyme was maintained despite the drastic changes to the binding pocket and yielded (R)-1,3-DMBA with nearly complete conversion making it an attractive catalyst in the synthesis of chiral amines. This was the first example of a cofactor-dependent amine dehydrogenase capable of selectively synthesizing chiral amines from a prochiral ketone and free ammonia. Additionally, knowledge gained altering the specificity of the leucine dehydrogenase scaffold was applied to an analogous phenylalanine dehydrogenase scaffold allowing for rapid evolution of novel activity. A single mutational library resulted in a second amine dehydrogenase with enhanced activity toward significantly different substrates, while maintaining comparable conversion and enantioselectivity. These two scaffolds provide examples of the broad applicability of the identified mutations in creating amine dehydrogenase activity.
192

Assessment of platinum mine tailings storage facilities : an ecotoxicological perspective / Mandy T. Jubileus

Jubileus, Mandy Theresa January 2008 (has links)
South Africa is one of the most important mining countries in the world, hosting the world's largest reserves of platinum group metals (PGMs). Even though mining is clearly an important activity in South Africa, contributing approximately US$ 7.4 billion annually to the countries' gross domestic product (GDP), the costs to the environment are not insignificant. One of the most severe environmental aspects associated with mining is the storage of mineral waste on tailings storage facilities due to their impacts on air quality, ground water quality, aesthetics and land use. It is also unknown whether the environmental effects of tailings storage facilities increase or decrease over time. The aim of this study was to determine the ecotoxicity of platinum tailings storage facilities of different ages by means of soil physical and chemical analysis, earthworm ecotoxicological studies, dehydrogenase activity and soil mesofauna studies. Samples were obtained from three platinum tailings storage facilities of different ages of which two were already rehabilitated while the third was still operational at the time this study was performed. The latter was used as a negative control for the purpose of the study. Soil samples were physically and chemically analysed. Earthworm ecotoxicological studies were conducted to determine changes in biomass, reproduction, mortality, neutral red retention times and tissue metal concentrations. Dehydrogenase activity was determined before the introduction of earthworms and manure, after introductions of manure and after introductions of earthworms and manure. Soil mesofauna were extracted and identified in order to determine species richness, diversity, abundance and functional grouping. Soil chemical analysis indicated that concentrations of certain heavy metals, especially chrome (Cr), present in platinum tailings materials could have a potential effect on microorganisms, microbial processes and earthworms. Earthworm ecotoxicological results indicated that earthworms that bioaccumulated higher levels of heavy metals showed poor hatchability of cocoons. Dehydrogenase activity indicated that earthworms play a significant role in increasing the number and biomass of soil microbes because significant increases in dehydrogenase activity were noticed after the addition of earthworms to platinum tailings materials. Results from the earthworm ecotoxicological studies, dehydrogenase activity, and soil mesofauna composition indicated that environmental impacts of tailings storage facilities did not increase with age, but is more likely to be an indication of the rehabilitation measures administered to the different tailings storage facilities. / Thesis (M. Environmental Science)--North-West University, Potchefstroom Campus, 2009.
193

Lactate Dehydrogenase and Citrate Synthase activity in cardiac and skeletal muscle of lowland and highland tinamous

Aira, Naomi January 2013 (has links)
Tinamous (Tinamidae) have the smallest heart in relation to body mass compared to any other flying bird today (Bishop 1997). This means that heart size is likely to restrict aerobic metabolism. Tinamous inhabit areas from sea level to 4800 m a.s.l., which means that the high altitude living species, Nothoprocta ornata (NO), is exposed to hypoxia. In this study the activity of the two metabolic enzymes Lactate Dehydrogenase (LDH) and Citrate Synthase (CS) was measured and the ratio between the enzyme activities calculated to examine if the small heart of the tinamous affects their aerobic/anaerobic metabolism. The activity of the two enzymes was measured in the heart and the gastrocnemius muscle in the three species Nothoprocta ornata (NO), Nothoprocta perdicaria (NP) and Gallus gallus (GG). CS activity was significantly higher in the heart compared to the skeletal muscle and LDH activity was significant higher in the skeletal muscle than in the heart in all three species. The LDH/CS ratio was significantly higher in NO’s skeletal muscle than in chickens but there was no significant difference between species in the heart. The higher ratio in NO´s muscle could be a sign of a higher anaerobic metabolism that is used in the muscles to compensate for the small heart NO have. In conclusion, the Tinamous
194

Characterizing the Biological Functions of Five Shikimate Dehydrogenase Homologs Enzymes in Pseudomonas putida KT2440

Penney, Kathrine 26 November 2012 (has links)
The shikimate pathway links carbohydrate metabolism to biosynthesis of the aromatic amino acids in plants, fungi, bacteria and apicomplexan parasites. The pathway has seven enzymatic steps which convert erythrose-4-phosphate and phosphoenolpyruvate to chorismate, the precursor of tyrosine, tryptophan and phenylalanine. Due to the absence of the pathway in mammalian species, the enzymes are attractive targets for herbicides and antimicrobials. Shikimate dehydrogenase (SDH) catalyses the fourth step, the NADP-dependent reversible reduction of 3-dehydroshikimate to shikimate. Five SDH homologs – AroE, Ael1, YdiB, RifI and SdhL – have been identified through kinetic analysis and phylogenetic studies in the bacterium Pseudomonas putida. SDH homolog gene knockouts (KO) were used to characterize their functions. The AroE KO and Ael1 KO were successfully constructed via gene SOEing of the SDH homolog with a gentamycin antibiotic cassette and homologous recombination via electroporation into WT P. putida KT2440. Preliminary characterization tested KO growth, auxotroph recovery and fluorescent activity.
195

Tetrahydrofolate and iron-sulfur metabolism in Saccharomyces cerevisiae

Gelling, Cristy Lee, Biotechnology & Biomolecular Sciences, Faculty of Science, UNSW January 2008 (has links)
Tetrahydrofolate-mediated one-carbon metabolism is required for the biosynthesis of many central metabolites, including some amino acids, nucleobases, and nucleotides, and hence dysfunction of one-carbon metabolism is associated with many human diseases and disorders. The mitochondrial glycine decarboxylase complex (GDC) is an important component of one-carbon metabolism, generating 5,10-methylene-tetrahydrofolate (5,10-CH2-H??4folate) from glycine. Previous work has shown that the genes encoding the unique sub-units of the Saccharomyces cerevisiae GDC (GCV1, GCV2 and GCV3) are regulated in response to changes in the levels of cytosolic 5,10-CH2-H??4folate (Piper et al., 2000). Given the centrality of 5,10-CH2-H??4folate to many aspects of metabolism, it was hypothesised that other genes may be regulated by the same mechanism. Using microarray analysis of S. cerevisiae under a number of conditions that affect 5,10-CH2-H??4folate levels, the ??one-carbon regulon??, a group of genes that were co-regulated with the GCV genes was identified. The one-carbon regulon corresponds closely to genes whose promoters are bound by the purine biosynthesis regulator Bas1p, but not all one-carbon regulon members are significantly purine regulated. Genetic approaches demonstrated that the one-carbon unit response and the purine response are distinct, though both depend on the presence of Bas1p. This demonstrated that the close metabolic connections of one-carbon and purine metabolism are reflected in over-lapping, but separable regulatory mechanisms. The identity of the sensor of one-carbon unit depletion remains unknown, but in the course of investigation of the candidate regulator Caf17p, it was demonstrated that Caf17p is in fact involved in Fe/S cluster protein maturation. Examination of the effects of Caf17p depletion revealed that Caf17p is required for the function and maturation of the related mitochondrial Fe/S proteins aconitase and homoaconitase, as well as the function of, but not de novo iron incorporation into, the mitochondrial radical-SAM Fe/S protein biotin synthase. Because other Fe/S proteins were unaffected, Caf17p appears to be a specialised Fe/S maturation factor. The presence of a putative H4folate binding site indicates that Caf17p may constitute a metabolic link between one-carbon and iron metabolism.
196

Investigation of the freeze-thawing process for pharmaceutical formulations of a model protein /

Hillgren, Anna, January 2002 (has links)
Diss. (sammanfattning) Uppsala : Univ., 2002. / Härtill 5 uppsatser.
197

Bioinformatic methods in protein characterization /

Kallberg, Yvonne, January 2002 (has links)
Diss. (sammanfattning) Stockholm : Karol. inst., 2002. / Härtill 5 uppsatser.
198

Central carbon metabolism of the biocontrol yeast Pichia anomala : influence of oxygen limitation /

Fredlund, Elisabeth, January 2004 (has links) (PDF)
Diss. (sammanfattning) Uppsala : Sveriges lantbruksuniversitet, 2004. / Härtill 5 uppsatser.
199

Structure determination, thermal stability and catalytic mechanism of hyperthermostable isocitrate dehydrogenases /

Karlström, Mikael, January 2006 (has links)
Diss. (sammanfattning) Stockholm : Karolinska institutet, 2006. / Härtill 6 uppsatser.
200

Roles of aldehyde dehydrogenases (ALDHs) against oxidative stress /

Lassen, Natalie. January 2006 (has links)
Thesis (Ph.D. in Toxicology) -- University of Colorado at Denver and Health Sciences Center, 2006. / Typescript. Includes bibliographical references (leaves 119-138). Free to UCDHSC affiliates. Online version available via ProQuest Digital Dissertations;

Page generated in 0.0422 seconds