Spelling suggestions: "subject:"echinococcus radiodurans""
1 |
Effect of manganese on the metabolism of glucose in Deinococcus radioduransHsueh, Ya-chao 19 February 2001 (has links)
ABSTRACT
Deinococcus radiodurans is extremely resistant to ionizing and UV irradiation. The addition of manganese(¢º) into stationary-phase culture can trigger a new cycle of cell division ( Mn-CD effect ). Although D.radiodurans can hardly utilize sugar , but it does can incorporate glucose and fructose into the cell mass. We found that D. radiodurans can metabolize sugar by glycolysis ( EMP ) and pantose phosphate pathway ( PPP ). The activity of both pathways would be altered by the addition of manganese(¢º). The marker enzymes of the PPP ( transketolase ) and EMP pathway ( aldolase ) were also analyzed. Results show that manganese(¢º) can induce the hydrolysis of glucose by activating the EMP pathway. However , the induction effect various with different cultural conditions. In analyzing the PPP pathway , the activities of transketolase were also various with different cultural conditions.
|
2 |
Effects of manganese on the proteomic expression in Deinococcus radioduransLi, Pei-I 16 July 2002 (has links)
The addition of Mn2¡Ï to stationary phase culture of Deinococcus radiodurans could induce further cell division. This type of cell division termed "Mn-induced Cell Division (Mn-CD)". The Mn-CD cells were less resistant to radiation, having smaller cell size, and forming less red-pigment. However, the activities of antioxidation enzymes such as superoxide dismutase (SOD) and catalase, were increased. No other divalent metal ions could cause Mn-CD. In this study, 2-D electrophoresis and Matrix Assisted Laser Desorption Ionization (MALDI) MASS were used to analyze the proteomic differences between Mn-CD and normal uninduced cells. The results showed that the expression of ribosomal proteins L20, L34, L35, chain 3 of the large ribosomal subunit, preprotein translocase (SecE subunit) and three hypothetical proteins (DR1423, DR1897 and one unidentified gene product), were pressed significantly in the cell culture when Mn2¡Ï were added. Since these ribosomal proteins are responsible for the synthesis of protein, it is clear that Mn2¡Ï could disturb the proteins synthesis in this bacterium. The addition of Mn2¡Ïcould also induce the expression of acetyl-CoA acetyltransferase, transcriptional regulator (TetR family), phosphinothricin acetyltransferase and three hypothetical proteins (DR0214, DR0296 and DRA0100). The functions of these hypothetical proteins were not known yet. In conclusion, it is true that Mn2¡Ï could alter the proteomic expression and some metabolic pathways in D. radiodurans.
|
3 |
Effects of Various Monosaccharides and Disaccharides on the Growth of Deinococcus radioduransChen, Jean-Lin 02 March 2001 (has links)
Abstract
The highly radioresistant Deinococcus radiodurans is a heterotrophic Gram positive aerobic tetrad. The addition of 2.5 uM Mn(II) into the early stationary-phase culture would trigger a new round of cell division (Mn-CD effect) which is specific to this unique bacterium. In order to understand the reactions of this bacterium to different carbohydrates, we culture the bacterium by using complex media with various monosaccharides and disaccharides.
No matter in the present of Mn(II) or not, the specific growth rate of fructose¡Vgrown cells was always higher than those of glucose-grown cells. Cell growth would be inhabited by excess Mn(II). Along with the increasing of Mn(II), the culture showed a prolonged lag phase. In chemically defined media, this bacterium grew well by using glucose, fructose, mannose, maltose or sucrose as it¡¦s sole carbon source and performed the Mn-CD growth by adding Mn(II).
II
|
4 |
Single bacterium proteomics : analysis of the RecA protein in single Deinococcus radiodurans /Turner, Emily H. January 2007 (has links)
Thesis (Ph. D.)--University of Washington, 2007. / Vita. Includes bibliographical references (leaves 159-173).
|
5 |
Isolation, reconstitution, and molecular cloning of the manganese-containing superoxide dismutase from Deinococcus radiodurans /Bu, Jia-Ying J., January 1992 (has links)
Thesis (Ph. D.)--Virginia Polytechnic Institute and State University, 1992. / Vita. Abstract. Includes bibliographical references (leaf 193). Also available via the Internet.
|
6 |
The study of gene expression induced by manganese of Deinococcus radioduransHuang, Kwun-lun 27 August 2004 (has links)
Deinococcus radiodurans is a highly UV and radio resistant bacterium. The addition of Mn2+ could induce an Mn-CD effect in this bacterium. In this study, we used two-dimensional polyacrylamide gel electrophoresis to compare and analyze the expressed-proteins under various growth conditions, such as temperature and the presence of Mn2+ or not. The results showed that Mn2+ could affect the similarity proteins expression. As the time of Mn-CD effect elapsed longer, the similarity of the proteins from different growth phages became lower. This indicated that Mn2+ indeed could induce or repress the gene expression. From the 2-D gel analysis, there were fourteen proteins had been induced or overexpressed. Five of them were the proteins with the functions for the synthesis and decomposition of proteins and DNA, others were ATP-binding cassette¡]ABC¡^transporter¡Bsuperoxide dismutase[Mn], and the rest five were the hypothetical proteins with unclear function. In addition, this study also found that the cultivation temperatures caused conformational and physiological modification of the cell. The addition of Mn2+ could enhance the viability of the bacterium at higher temperature.
|
7 |
Effect of Mn2+ on the provision of DNA repair material and energy of Deinococcus adiodurans.Yen, Meng-Chi 12 September 2002 (has links)
Abstract
Deinococcus radiodurans is highly resistant to radiation when it grown in tryptone-glucose-yeast extraxt (TGY) medium. It oxidized glucose slowly mainly by the pentose phosphate pathway (PPP) and showed little glycolytic Embden-Meyerhof pathway (EMP) activity. The addition of 10 µM Mn(II) into the stationary phase cultures, could induced new round of cell division (Mn-CD effect) and the EMP activity. Glucose metabolized by Mn-CD cells at a EMP:PPP=6:1 ratio. In analyzing the metabolites for DNA repair, we found that after the addition of Mn(II) , the concentrations of PPP metabolites such as insione monophosphate (IMP)¡Buridine monophosphate (UMP) and NAD (nicotine adenine dinucleotide) were greatly reduced. This event is also occurred when replacing the glucose by fructose, sodium acetate, or removing glucose from the TGY culture medium. Besides, we also found that the TGY and TFY grown cells contained more PPP metabolites than those of TAY and TY cells. This finding suggested that glucose and fructose were metabolized by the PPP pathway in D. radiodurans. Finally, the concentrations of IMP¡BUMP and NAD in the cells were greatly decreased after UV irradiation. This indicated that these metabolites were probably employed to repair the DNA damage causing by UV irradiation.
|
8 |
Potency of nanoparticles to amplify radiation effects revealed in radioresistant bacteria / La puissance de nanoparticules à amplifier les effets des rayonnements révélé dans des bactéries radiorésistantesLi, Sha 04 April 2014 (has links)
Les thérapies par irradiation sont utilisées pour traiter la plupart des cas de cancer. Une limitation majeure est l’induction de dommages dans les tissus sains. Par conséquent, l’amélioration du ciblage tumoral est un défi majeur. L'addition de nanoparticules (NPs) est proposée comme une nouvelle stratégie pour amplifier les effets des radiations dans les tumeurs (radiosensibilisation ). Les nanoparticules de Z élevé (platine, or, gadolinium) se révèlent être de bons candidats. Afin de développer de nouveaux nanoagents et d’améliorer les plans de traitement, il est nécessaire de mieux comprendre les mécanismes fondamentaux impliqués. Il a été observé que les radiosensibilisateurs augmentent l'effet létal des radiations (ions rapides ou rayons gamma). Ceci est attribué à une cascade d'événements multi-échelle qui comprend l'activation des NPs, leur relaxation, suivi de la production de radicaux responsables de la mort cellulaire (dans les eucaryotes). Il n'est pas encore clair laquelle des étapes, entre l’excitation/relaxation électronique des NPs ou la réponse biologique joue le rôle prédominant. Par conséquent, le défi de ma thèse était de tester les effets de radiosensibilisateurs (NPs d'or, de platine ou à base de gadolinium) sur des cellules autres que des cellules eucaryotes. Pour la première fois, l’effet des NPs a été testé sur la bactérie la plus radiorésistante jamais rapportée, D. radiodurans. Les NPs ont également été testées sur E. coli. Des études à l'échelle moléculaire ont été utilisées pour comprendre les mécanismes élémentaires. En résumé, ce travail montre que les NPs radiosensibilisantes amplifient les effets des rayons γ dans les bactéries radiosensibles et radiorésistantes. Ceci est attribué à la production de grappes de radicaux et à l’induction de dommages nanométriques dans l'ADN mais également dans les protéines de réparation. Finalement la radiosensibilisation est un phénomène «universel» qui peut être induite dans tout organisme vivant. En d'autres termes, les mécanismes élémentaires liés à l’excitation/relaxation de la NP jouent un rôle majeur par rapport à la réponse biologique de la cellule. Enfin, un ensemble de méthodes ont été optimisées pour évaluer la toxicité et observer l’internalisation des NPs dans les bactéries. / Radiation therapies are used to treat most of the cancer cases. One major limitation is the damage induced in the healthy tissues and tumor targeting is a major challenge. The addition of nanoparticles (NPs) is proposed as a novel strategy to amplify the radiations effects in the tumors (radiosensitization). The high-Z nanoparticles (platinum, gold, gadolinium) are found to be good candidates. To develop new nanoagents and improve treatment planning, a deeper knowledge of the fundamental mechanisms is required. It was found that radiosensitizers enhance the lethal effect of radiations (fast ions and gamma rays). This is attributed to a multiscale cascade of events, which includes the NPs activation and relaxation, the production of water radicals up to the biological impact in mammalian cells. It is not clear yet what from the early stage processes or from the (eukaryotic) cell response is the key stage of the radiosensitization. Hence, the challenge of my thesis was to probe the effects of radiosensitizers (gold, platinum and gadolinium based nanoparticles) on cells other than eukaryotic cells. For the first time, their effect was tested on the most radioresistant bacterium ever reported Deinoccocus radiodurans (D. radiodurans). For comparison, the nanoparticles were tested on the radiosensitive bacterium E.coli. Additional studies at molecular scale were used to understand the elementary mechanisms. In summary, this work demonstrates that the radiosensitizing nanoparticles amplify the effects of -rays in radiosensitive and also radioresistant bacteria. This is attributed to the production of radical clusters and to the inducetion of nano-size biodamages in DNA but also in repair proteins. Finally, this work proves that the radiosensitization is a “universal” phenomenon that can take place in all living organisms. In other words, it tells that elementary mechanisms play a major role compared to the biological response of the cell. A set of standardized methods for evaluating the cellular uptake and the toxicity of the potential nanodrug was established throughout this study.
|
9 |
Cloning, Expression, Purification, and Characterization of the Fructose-1,6-Bisphosphate Aldolase of Deinococcus radioduransChen, Kuan-Wen 22 September 2003 (has links)
The addition of Mn(II) to an early stationary-phase Deinococcus radiodurans RI culture could induce a new round of cell division (MnCD effect). The addition of Mn(II) could also stimulate the utilization of glucose and fructose in this bacterium. Class II fructose-1,6-bisphosphate aldolase (FBA) is an Mn-dependent key enzyme in pentose phosphate pathway. Therefore, in this research, we focused on the studies of the fba gene. Base on the gene sequence, FBA protein was composed of 306 amino acids, (M.W., 32.4 kDa¡F pI, 5.4). The expected PCR product size of the fba gene is 9.3 kbp. We had amplified the fba gene by using both Taq DNA polymerase and pfu turbo DNA polymerase. The sequence of the pfu turbo DNA polymerase products showed a higher homology with the fba gene than those of using Taq DNA polymerase. These amplified fba gene was cloned into three expression vectors, pGEX-4T-2, pQE30, and pET28a, and then further expressed in E. coli BL21(DE3)RIL and JM109. The recombinant GST-FBA protein could be overproduced in pTDA2/BL21(DE3)RIL. However, the expressed insoluble protein accumulated as inclusion bodies in the cells and exhibited no enzyme activity. After partial purification, and processing by thrombin protease cleavage, urea treatment, and the addition of Mn(II), this enzyme still showed no activity. The recombinant pEDA2/BL21(DE3)RIL strain cells grew in 18¢J and induced by 0.1mM IPTG could produced a soluble form His-Thrombin-T7-FBA protein which performed a 50X higher activities than those cells grew in 30¢J. This result indicated that decreasing the indicatioin temperature could improve the protein solubility and activity.
|
10 |
Isolation, reconstitution, and molecular cloning of the manganese-containing superoxide dismutase from Deinococcus radioduransBu, Jia-Ying J. 04 September 2008 (has links)
The superoxide dismutase from a radiation-resistant bacterium Deinococcus radiodurans has been purified to electrophoretic homogeneity. The superoxide dismutase has a specific activity of 3300 units/mg and an apparent molecular mass of 43,000 daltons. The enzyme contains 1.5 gram-atom of manganese per mol dimer, and is composed of two identical subunits of 23,500 daltons. The enzyme rapidly loses its catalytic activity and metal content upon dialysis in denaturing reagent, guanidine hydrochloride, and the metal ion chelator 8-hydroxyquinoline. The denatured apoprotein was renatured upon removal of the denaturant by dialysis. The renatured apoprotein assumed a gross conformation similar to the native enzyme as indicated by fluorescence spectroscopy. The renatured apoprotein was reconstituted to the native specific activity upon addition of manganese in the absence of denaturant. The manganese econstituted enzyme contained 1.7 gram-atom of manganese per mol dimer, and had a specific activity of 3650 units/mg. Kinetic studies revealed that the reconstitution with manganese was pH-dependent, and was inhibited by competing metal ions (iron and zinc). / Ph. D.
|
Page generated in 0.0898 seconds