1 |
A Platform for a Wheeler's Delayed-Choice Experiment in Optical Fiber / En fiberoptisk plattform till Wheeler's experiment med sent valÅhlgren, Gustaf January 2022 (has links)
Quantum mechanics has played a big role in the development of our understanding of the smallest things in the universe. It has provided descriptions for phenomena like single electrons or single photons, which are single particles of light. One of the most mysterious properties of quantum systems is the ability to behave as a particle or a wave. In 1978, J. A. Wheeler devised an experiment to investigate if a quantum system knows in advance if it should propagate as a wave or as a particle through an experiment, by changing the experiment after the quantum system has entered the experimental set-up. Here an optical all-in fiber platform for a Wheeler's delayed choice experiment is modeled, constructed and tested using commercially available fiber optic components. This is in contrast to previous delayed choice experiments, which have used free-space components in some parts of their experimental set-up. The optical set-up was modeled and simulated using a quantum formalism, with future work in mind if the platform is used to perform a quantum delayed-choice experiment. The platform used a Sagnac interferometer as the second beamsplitter in a Mach-Zehnder interferometer, to perform the choice of measuring either particle or wave properties. Using a fiber platform, the length of the platform can easily be extended with more fiber to accommodate a large separation between the beamsplitter in the beginning of the set-up, and the Sagnac interferometer at the end of the set-up. The result was a stable platform to measure particle behavior of light with good performance, and the ability to switch between these measurements on the fly. The system was tested with classical light, but the light source can be changed from a laser, to for example an attenuated laser, to enter the quantum domain for performing a quantum delayed-choice experiment using the platform. / Kvantmekaniken har inneburit stora genombrott i vår förståelse av de allra minsta tingen i universum. Kvantmekaniken har gett oss beskrivningar av fenomen som enstaka elektroners beteende eller enstaka ljuspartiklar, så kallade fotoner. En av de märkligaste egenskaperna som finns hos subatomära partiklar är förmågan att upptärda som en våg eller som en partikel, beroende på sammanhanget. År 1978 beskrev J. A. Wheeler ett experiment för att undersöka om en kvantmekanisk partikel, till exempel en foton, vet i förväg om den skall färdas som en partikel eller som en våg genom en experimentuppställning. Undersökningen av detta görs genom att ändra experimentuppställningen samtidigt som den kvantmekaniska partikeln färdas genom uppställningen. En fiberoptisk plattform för Wheelers experiment med sent val modelleras, byggs med kommersiella fiberoptiska komponenter och testas i denna uppsats. Detta skiljer sig från tidigare experiment som har använt frirymds optik i någon del av experimentuppställningen. Den optiska kretsen modelleras med kvantmekanikens formalism, detta för att underlätta för framtida experiment som använder plattformen för att genomföra den kvantmekaniska varianten av Wheelers experiment med sent val. Plattformen består av en Sagnac interferometer som ersätter den andra stråldelaren i en Mach-Zehnder interferometer, och därmed ger funktionen att kunna byta mellan mätning av partikelegenskaper och mätning av vågegenskaper. Den fiberoptiska plattformen är enkel att förlänga för att skapa ett långt avstånd mellan den första stråldelaren och Sagnac interferometern. Resultatet var en stabil plattform med god förmåga att mäta partikelegenskaper respektive vågegenskaper hos ljus och byta mellan dessa mätlägen under experimentets gång. Systemet testades med klassikt laserljus men denna ljuskälla kan enkelt bytas ut mot en dämpad laser för att komma ned på ljusnivåer med enstaka fotoner, och därmed kunna genomföra den kvantmekaniska varianten av Wheelers experiment med sent val.
|
2 |
Quantum States as Objective Informational BridgesHealey, Richard 09 September 2015 (has links)
A quantum state represents neither properties of a physical system
nor anyone s knowledge of its properties. The important question is not
what quantum states represent but how they are used as informational
bridges. Knowing about some physical situations (its backing conditions),
an agent may assign a quantum state to form expectations about other
possible physical situations (its advice conditions). Quantum states are
objective: only expectations based on correct state assignments are gen-
erally reliable. If a quantum state represents anything, it is the objective
probabilistic relations between its backing conditions and its advice con-
ditions. This paper o¤ers an account of quantum states and their function
|
3 |
THE EFFECT OF NUMBER OF OPTIONS ON CHOICES INVOLVING DELAYED CAUSATIONNguyen, Nam Dai 01 January 2009 (has links)
In this study of causal decision-making, a video game was adapted to explore factors affecting causal judgment in a dynamic setting. In the experiment, participants were presented with groups of potential targets. Causal delay and number of alternatives were varied. The participants were tasked with discriminating which one of the potential targets was producing a secondary event in the form of distal explosions on objects that the participant was instructed to preserve. Choice accuracies and latencies were recorded for each participant. For the analysis, choice accuracies were converted into discriminability metrics using signal detection theory. The experiment revealed a main effect of delay on discriminability but no effect of the number of alternatives. There were main effects of the number of alternatives, sex, as well as a Delay × Number of alternatives interaction on latency. The results suggest that discriminability is maintained across different numbers of targets by compensating with longer observation times.
|
4 |
Space-Division-Multiplexing Platform for a Delayed-Choice ExperimentKarlsson, Hilma January 2023 (has links)
This master’s thesis explores a space-division-multiplexing (SDM) platform fora delayed-choice experiment. SDM is a multiplexing technique for optical datatransmission that employs spatial modes in a multi- or few-mode fiber to increasethe transmission capacity. The spatial modes can thus be used as separate channels. SDM have shown great potential for quantum information systems, making it intriguing to investigate its broad applications by examining its use in adelayed-choice experiment. The delayed-choice experiment was proposed by J.A.Wheeler in 1978 explored the particle- and wave-like behavior of quantum particles and observe if the particle knows in advance if it should propagate as a waveor a particle through the experimental platform. Hence, it was suggested thatthe experiment should be changed after the particle entered the experimentalplatform. The experiment has afterward been realized in many different constellations but previous wave-particle delayed-choice experiments have not beendemonstrated with SDM nor with an all in fiber platform. The research involved modeling and constructing a SDM fiber-optic platform,only utilizing commercially available fiber optical telecommunication components. The platform was constructed with photonic lanterns, used as spatial division multiplexer and demultiplexer, and a two-input fiber Sagnac Interferometer,as a removable beam splitter. The system was tested with classical light but without difficulties, the platform could move to the quantum domain for performingthe delayed-choice experiment with single photons on the platform. The thesis resulted in a SDM platform with good performance for future measurement of bothparticle- and wave-like behavior of photons in a delayed-choice experiment.
|
Page generated in 0.231 seconds