• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Performance Evaluation of Analytical Queries on a Stand-alone and Sharded Document Store

Raghavendra, Aarthi January 2015 (has links)
No description available.
2

Higher Radix Floating-Point Representations for FPGA-Based Arithmetic

Catanzaro, Bryan Christopher 22 April 2005 (has links) (PDF)
Field Programmable Gate Arrays (FPGAs) are increasingly being used for high-throughput floating-point computation. It is forecasted that by 2009, FPGAs will provide an order of magnitude greater sustained floating-point throughput than conventional processors. FPGA implementations of floating-point operators have historically been designed to use binary floating-point representations, as do general purpose processors. Binary representations were chosen as the standard over three decades ago because they provide maximal numerical accuracy per bit of floating-point data. However, the unique nature of FPGA-based computation makes numerical accuracy per unit of FPGA resources a more important measure of the usefulness of a given floating-point representation. From this viewpoint, higher radix floating-point representations are well suited to FPGA-based computations, especially high precision calculations which require the support of denormalized numbers. This work shows that higher radix representations lead to more efficient use of FPGA resources. For example, a hexadecimal floating-point adder provides a 30% lower Area-Time product than its binary counterpart, and a hexadecimal floating-point multiplier has a 13% lower Area-Time product than its binary counterpart. This savings occurs while still delivering equal worst-case and better average-case numerical accuracy. This work presents a family of higher radix floating-point representations that are designed specifically to interoperate with standard IEEE floating-point, allowing the creation of floating-point datapaths which operate on standard binary floating-point data, yet use higher radix representations internally. Such datapaths provide higher performance by any measure: they are more accurate numerically, consume less FPGA resources and have shorter latencies. When taking into consideration the unique nature of FPGA-based computing systems, this work shows that binary floating-point representations are not optimal for most FPGA-based arithmetic computations. Higher radix representations can therefore be a useful tool for building efficient custom floating-point datapaths on FPGAs.

Page generated in 0.0182 seconds