Spelling suggestions: "subject:"sense nonaqueous phase liquid"" "subject:"sense monaqueous phase liquid""
1 |
DNAPL remediation of fractured rock evaluated via numerical simulationPang, Ti Wee January 2010 (has links)
Fractured rock formations represent a valuable source of groundwater and can be highly susceptible to contamination by dense, non-aqueous phase liquids (DNAPLs). The goal of this research is to evaluate the effectiveness of three accepted remediation technologies for addressing DNAPL contamination in fractured rock environments. The technologies under investigation in this study are chemical oxidation, bioremediation, and surfactant flushing. Numerical simulations were employed to examine the performance of each of these technologies at the field scale. The numerical model DNAPL3D-RX, a finite difference multiphase flow-dissolution-aqueous transport code that incorporates RT3D for multiple species reactions, was modified to simulate fractured rock environments. A gridding routine was developed to allow the model to accurately capture DNAPL migration in fractures and aqueous phase diffusion gradients in the matrix while retaining overall model efficiency. Reaction kinetics code subroutines were developed for each technology so as to ensure the key processes were accounted for in the simulations. The three remedial approaches were systematically evaluated via simulations in two-dimensional domains characterized by heterogeneous orthogonal fracture networks parameterized to be representative of sandstone, granite, and shale. Each simulation included a DNAPL release at the water table, redistribution to pools and residual, followed by 20 years of ‘ageing’ under ambient gradient conditions. Suites of simulations for each technology examined a variety of operational issues including the influence of DNAPL type and remedial fluid injection protocol. Performance metrics included changes in mass flux exiting, mass destruction in the matrix versus the fractures, and percentage of injected remedial fluid interacting with the target contaminant. The effectiveness of the three remediation technologies covered a wide range; the mass of contaminants destroyed were found to range from 15% to 99.5% of the initial mass present. Effectiveness of each technology was found to depend on a variety of critical factors particular to each approach. For example, in-situ chemical oxidation was found to be limited by the organic material present in the matrix of the rocks, while the efficiency of enhanced bioremediation was found to be related to factors such as the location of indigenous bacteria present in the domain and rate of bioremediation. In the chemical oxidation study, the efficiency of oxidant consumption was observed to be poor across the suite of scenarios, with greater than 90% of the injected permanganate consumed by natural oxidant demand. This study further revealed that the same factors that contributed to forward diffusion of contaminants prior to treatment are critical to this remediation method as they can determine the extent of contaminant destruction during the injection period. Bioremediation in fractured rock was demonstrated to produce relatively good results under robust first-order decay rates and active microorganisms throughout the fractures and matrix. It was demonstrated that under ideal conditions, of the total initial mass present, up to 3/4 could be reduced to ethene, indicating bioremediation may be a promising treatment approach due to the effective penetration of electron donor into the matrix during the treatment period and the ongoing treatment that occurs after injection ceases. However, when indigenous bacteria was assumed to exist only within the fractured walls of sandstone, it was found that under the same conditions, the rate of dechlorination was 200 times less than the Base Case. Since the majority of the mass resided in the matrix, lack of bioremediation in the matrix significantly reduced the effectiveness of treatment. Surfactant treatment with Tween-80 was proven to be a relatively effective technique in enhanced solubilisation of DNAPL from the fractures within the domain. However, by comparing the aqueous and sorbed mass at the start and end of the Treatment stage, it is revealed that surfactant treatment is not efficient in removing these masses that reside within the matrix. Furthermore, DNAPLs identified in dead end vertical fractures were found to remain in the domain by the end of the simulations across all scenarios studied; indicating that the injected surfactant experiences difficulty in accessing DNAPLs entrapped in dead end fractures. Altogether, the results underscore the challenge of restoring fractured rock aquifers due to the field scale limitations on sufficient contact between remedial fluids and in situ contaminants in all but the most ideal circumstances.
|
2 |
Application of in situ chemical oxidation technology to remediate chlorinated-solvent contaminated groundwaterWen, Yi-ting 22 August 2010 (has links)
Groundwater at many existing and former industrial sites and disposal areas is contaminated by halogenated organic compounds that were released into the environment. The chlorinated solvent trichloroethylene (TCE) is one of the most ubiquitous of these compounds. In situ chemical oxidation (ISCO) has been successfully used for the removal of TCE. The objective of this study was to apply the ISCO technology to remediate TCE-contaminated groundwater. In this study, potassium permanganate (KMnO4) was used as the oxidant during the ISCO process. The study consisted bench-scale and pilot-scale experiments. In the laboratory experiments, the major controlling factors included oxidant concentrations, effects of soil oxidant demand (SOD) on oxidation efficiency, and addition of dibasic sodium phosphate on the inhibition of production of manganese dioxide (MnO2). Results show that higher molar ratios of KMnO4 to TCE corresponded with higher TCE oxidation rate under the same initial TCE concentration condition. Moreover, higher TCE concentration corresponded with higher TCE oxidation rate under the same molar ratios of KMnO4 to TCE condition. Results reveal that KMnO4 is a more stable and dispersive oxidant, which is able to disperse into the soil materials and react with organic contaminants effectively. Significant amount of MnO2 production can be effectively inhibited with the addition of Na2HPO4. Results show that the increase in the first-order decay rate was observed when the oxidant concentration was increased, and the half-life was approximately 24.3 to 251 min. However, the opposite situation was observed when the second-order decay rate was used to describe the reaction. Results from the column experiment show that the breakthrough volumes were approximately 50.4 to 5.06 pore volume (PV). Injection of KMnO4 would cause the decrease in TCE concentration through oxidation. Results also indicate that the addition of Na2HPO4 would not inhibit the TCE removal rate. In the second part of this study, a TCE-contaminated site was selected for the conduction of pilot-scale study. A total of eight remediation wells were installed for this pilot-scale study. The initial TCE concentrations of the eight wells were as follows: C1 = 0.59 mg/L, C1-E = 0.64 mg/L, C1-W = 0.61 mg/L, EW-1 = 0.65 mg/L, EW-1E = 0.62 mg/L, EW-1W = 0.57 mg/L, C2 = 0.62 mg/L, C3 = 0.35 mg/L. C1, EW-1, C2, and C3 were located along the groundwater flow direction from the upgradient (C1) to the downgradient location (C3), and the distance between each well was 3 m. C1-E and C1-W were located in lateral to C1 with a distance of 3 m to C1. EW-1E and EW-1W were in lateral to EW-1 with a distance of 3 m to EW-1. In the first test, 2,700 L of KMnO4 solution was injected into each of the three injection wells (C1, C1-E, and C1-W) with concentration of 5,000 mg/L. Three injections were performed with an interval of 6 hr between each injection. After injection, the TCE concentrations in those three wells dropped down to below detection limit (<0.0025 mg/L). However, no significant variations in TCE concentrations were observed in other wells. In the second test, 2,700 L of KMnO4 solution was injected into injection well (EW-1) with concentration of 5,000 mg/L. Six injections were performed with an interval of 6 hr between each injection. After injection, the TCE concentrations in the injection well dropped down to below detection limit (<0.0025 mg/L). TCE concentrations in (C1, C1-E, C1-W, EW-1E, EW-1W, C2, and C3) dropped to 0.35-0.49 mg/L. After injection, no significant temperature and pH variation was observed. However, increase in conductivity and oxidation-reduction potential (ORP) was observed. This indicates that the KMnO4 oxidation process is a potential method for TCE-contaminate site remediation. The groundwater conductivity increased from 500 £gS/cm to 1,000 £gS/cm, and ORP increased from 200 to 600 mv. Increase in KMnO4, MnO2, and total Mn was also observed in wells. Results from the slug tests show that the hydraulic conductivity remained in the range from 10-4 to 10-5 m/sec before and after the KMnO4 injection.
|
3 |
DNAPL migration in single fractures : issues of scale, aperture variability and matrix diffusionHill, Katherine I January 2007 (has links)
[Truncated abstract] To date, many subsurface contaminant modelling studies have focused on increasing model complexity and measurement requirements to improve model accuracy and widen model application. However, due to the highly complex and heterogeneous nature of flow in the subsurface, the greater benefit in model development may lie in decreasing complexity by identifying key processes and parameters, simplifying the relationships that exist between them, and incorporating these relationships into simple models that recognise or quantify the inherent complexity and uncertainty. To address this need, this study aims to identify and isolate the key processes and parameters that control dense nonaqueous phase liquid (DNAPL) and aqueous phase migration through single, onedimensional fractures. This is a theoretical representation which allows the study of processes through conceptual and mathematical models. Fracture systems typically consist of multiple two-dimensional fractures in a three-dimensional network; however, these systems are computationally and conceptually demanding to investigate and were outside of the scope of this study. This work initially focuses on DNAPL migration in single, one-dimensional fractures. The similitude techniques of dimensional and inspectional analysis are performed to simplify the system and to develop breakthrough time scale factors. This approach relies heavily on the limitations of the equation used for the analysis and on the difficulty in representing variable aperture scenarios. The complexity of the conceptual model is then increased by embedding the fracture in a two-dimensional, porous matrix. ... These tools can be readily applied by the field investigator or computer modeller to make order-of-magnitude estimates of breakthrough times, reduce or target measurement requirements, and lessen the need to employ numerical multiphase flow models. To determine the implications of the results found in the one-dimensional studies to applications at the field scale, the complexity of the conceptual model was increased to a single, two-dimensional, planar fracture embedded in a three-dimensional porous matrix. The focus of this study was not DNAPL breakthrough times but the relative importance and interaction of different mass transport processes and parameters on plume migration and evolution. Observations clearly show that estimates of the size, location and concentration of the plume is highly dependent on the geologic media, the temporal and spatial location and resolution of measurements, and on the history, mass and location of the DNAPL source. In addition, the processes controlling mass transport (especially matrix diffusion and back diffusion) act in combination at the field scale in ways not always expected from an analysis of processes acting individually at smaller spatial and temporal scales. Serious concerns over the application of the common '1% Rule of Thumb' to predict DNAPL presence and the use of remediation efforts that rely largely on natural attenuation are raised. These findings have major implications for the field worker and computer modeller, and any characterisation, monitoring or remediation program development needs to be sensitive to these findings.
|
4 |
Towards an improved understanding of DNAPL source zone formation to strengthen contaminated site assessment: A critical evaluation at the laboratory scaleEngelmann, Christian 16 December 2021 (has links)
Environmental pollution has become a global concern as consequence of industrializa-tion and urbanization. The ongoing subsurface contamination by dense non-aqueous phase liquids (DNAPLs) bears tremendous hazardous potential for humans and ecosys-tems including aquifer systems. Intended or accidental spill events have led to a vast number of registered sites affected by DNAPL type chemicals. Despite the existence of novel techniques for their exploration, characterization and remediation, economical constraints often limit efforts for risk prevention or reduction, so that information and data to characterize highly complex DNAPL contamination scenarios are often insuffi-cient and compensated by natural attenuation of groundwater-dissolved contaminant plumes. Especially, knowledge on the DNAPL source zone geometry (SZG) and source zone formation are critically required yet very scarce. Against the previously stated background, this cumulative doctoral dissertation critically examined the processes of DNAPL source zone formation at laboratory scale. A comprehensive literature review identified current limitations and open research questions in the latter research field, revealing evidence for the relevance of SZG for plume response at different scales. Giv-en only a limited number of published studies related to DNAPL source zone formation, two simplified experimental setups mimicking source zone formation in an initially fully water-saturated aquifer were developed and intensively tested. The performance of aqueous and non-wetting phase dyes was evaluated for DNAPL release into three non-consolidated porous media using reflective optical imaging in combination with a cus-tom-made image processing and analysis (IPA) framework. The latter suite allowed for the generation of physically plausible DNAPL saturation distributions with determinable level of uncertainty. Then, a limited number of DNAPL release experiments were per-formed under controlled ambient as well as with boundary and initial conditions to generate robust observation data, while further adopting the IPA framework. The latter data was introduced into a numerical multiphase flow model. While most system pa-rameters could be directly determined, the parameters defining the capillary pressure-saturation and relative permeability-saturation retention curves were inversely deline-ated through a classical Monte Carlo analysis. Overall, the successfully calibrated nu-merical setup mimicking the transient DNAPL source zone formation allowed to quanti-fy uncertainties related to the experiment, IPA framework and model setup configura-tion. In addition, a number of new research questions pointing towards future im-provements of laboratory-scale methodologies to understand DNAPL contamination were derived. Especially in light of numerous existing contaminated sites with unclear history and even more vague future, given by potential impacts through climate change and anthropogenic activity, an increasing need for sophisticated strategies to better un-derstand DNAPL contamination and to reduce hazard potential is expected.:Statement I
List of publications II
Abstract VI
Acknowledgements and funding information IX
List of figures XIII
List of tables XIV
Abbreviations and symbols used in the main text XV
1 Introduction and background 1-1
1.1 Motivation of this thesis 1-1
1.2 Incorporation of this thesis in research projects 1-4
1.3 Definition of objectives and workflow strategy of this thesis 1-5
1.4 Formal structure of this thesis 1-11
2 Existing knowledge on DNAPL contamination 2-1
3 Fundamentals of DNAPL migration in porous media 3-1
3.1 Basic concepts for multiphase flow in porous media 3-1
3.2 Capillary pressure-saturation correlation 3-3
3.3 Relative permeability-saturation correlation 3-5
3.4 Balance equations for laminar fluid phase flow in porous media 3-7
4 Core research complex A : Development of a framework for the semi-automatized generation of DNAPL saturation distribution observation data 4-1
5 Core research complex B : Experimental and model-based simulation of DNAPL source zone formation 5-1
6 Summary and conclusions 6-1
6.1 Summary of perceptions for each main section of this thesis 6-1
6.2 New research questions with regard to DNAPL source zone formation at the laboratory scale 6-5
6.3 General recommendations for future works related to DNAPL contamination 6-8
References Ref-1
Appendix I : ENGELMANN ET AL. (2019a) App I-1
Published journal article App I-1
Appendix II : ENGELMANN ET AL. (2019b) App II-1
Published journal article App II-1
Electronic Supplementary Material 1 : Unprocessed raw TIFF format images used for IPA frame-work evaluation App II-26
Electronic Supplementary Material 2 : Sensitivities for color model change and binary conversion algorithms App II-36
Electronic Supplementary Material 3 :Relevance of spatially non-uniform illumination correction and background exclusion App II-76
Appendix III : ENGELMANN ET AL. (2021) App III-1
Published journal article App III-1
Electronic Supplementary Material 1 : Unprocessed raw TIFF format images for IPA framework ap-plication App III-30
Electronic Supplementary Material 2 : Processed images with all intermediate steps of IPA frame-work application App III-58
Electronic Supplementary Material 3 : IPA fitness App III-86
Electronic Supplementary Material 4 : Partial objective functions App III-87
Electronic Supplementary Material 5 : Model verification App III-93
|
Page generated in 0.0744 seconds