• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 615
  • 171
  • 59
  • 56
  • 11
  • 9
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 1123
  • 1123
  • 1067
  • 213
  • 199
  • 174
  • 161
  • 158
  • 153
  • 146
  • 145
  • 135
  • 131
  • 117
  • 115
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
271

On the stability of sp-valent materials at high pressure

Boates, Brian 19 November 2012 (has links)
The behavior of sp-valent solids and liquids under compression is a field of intense re- search. At high pressure, they often undergo phase transitions to new structures with novel properties such as superconductivity, high-energy density, and superhardness. Furthermore, knowledge of these materials is essential for understanding the structure and evolution of planets. Molecular systems such as nitrogen and carbon dioxide are particularly interesting as energetic materials: their strong molecular bonds break under compression spawning transformations to exotic polymeric phases. We have used first-principles theory and molecular dynamics to make predictions for the properties of dense nitrogen, carbon dioxide, magnesium silicate, and magnesium oxide. For nitrogen, we provide evidence for a rare first-order liquid-liquid phase transition; only the second such transition seen in an elemental fluid. New finite-temperature structure search techniques have been developed and applied to predict a thermodynamically stable polymeric metal phase of solid nitrogen. Regarding carbon dioxide, we have computed its high-pressure liquid phase diagram over a broad pressure-temperature range, revealing rich structural diversity. We have also designed new free energy methods to explore the stability of free CO2 under deep mantle conditions. Lastly, first-principles molecular dynamics and finite-temperature free energy methods were used to predict a high-pressure phase separation transition in liquid MgSiO3 and also characterize the high-pressure phase diagram of MgO, including its melting curve.
272

Integrating Experiment and Theory in Electrochemical Surface Science: Studies on the Molecular Adsorption on Noble-Metal Electrode Surfaces by Density Functional Theory, Electron Spectroscopy, and Electrochemistry

Javier, Alnald Caintic 16 December 2013 (has links)
Computational techniques based on density functional theory (DFT) and experimental methods based on electrochemistry (EC), electrochemical scanning tunneling microscopy (EC-STM), and high-resolution electron energy loss spectroscopy (HREELS) were employed to study the adsorption of (i) sulfuric acid on Pd(111), (ii) benzene on Pd(111), (iii) hydroquinone/benzoquinone on Pd(111), (iv) hydroquinone sulfonate/benzoquinone sulfonate on Pd(111), (v) 2,3-dimethylhydroquinone/2,3-dimethylbenzoquinone on Pd(111) and polycrystalline Pd, (vi) hydrogen on 1-6 monolayers (ML) of Pd deposited on a Pt(111) substrate, and (vii) a thiolated iron hydrogenase model complex on polycrystalline Au. In situ EC-STM and DFT investigations of sulfuric acid on a Pd(111) surface indicated that two layers of water molecules and hydronium ions are assembled, non-co-planar with one another, between the rows of surface-coordinated sulfate anions; the layer that is slightly elevated is composed of hydronium counter cations. The STM images of benzene chemisorbed on a Pd(111) electrode surface were simulated and the results suggested that, when the potential of the Pd electrode is held at 0.3 V, benzene is chemisorbed on a 3-fold site; while at 0.55 V, the molecule is adsorbed on a position between a 3-fold and a 2-fold site. Computational and experimental results implied that at low concentrations, hydroquinone sulfonate undergoes oxidative chemisorption forming benzoquinone sulfonate (BQS) on the Pd(111) surface, BQS adopts a flat orientation in which the quinone ring is centered over a 2-fold site, and the C–H and C–S bonds are no longer co-planar with the quinone ring and are slightly tilted, directed away from the surface. At very dilute concentrations, when hydroquinone (H_(2)Q) undergoes oxidative chemisorption producing benzoquinone oriented flat, albeit with a slight tilt, on the Pd(111) surface, the flat-adsorbed quinone ring is centered on a bridge site where the C_(2) axis is rotated 30degree from the [110] direction of the metal substrate, the p-oxygen atoms are located above two-fold sites, and the ring is slightly puckered with the C–H bonds tilted away from the surface at approximately 20degree. When 2,3-dimethylH_(2)Q is chemisorbed on the Pd surface, at low concentrations, 2,3-dimethylH_(2)Q is oxidatively chemisorbed producing 2,3-dimethyl-1,4-benzoquinone oriented flat on the surface, the flat-adsorbed rings are centered above 2-fold sites wherein the C=O bonds are pointing 30degree from the [110] direction of the substrate, the para-oxygen atoms are located above bridge sites, the peripheral bonds are tilted away from the surface at ca. 20degree, and at higher concentrations, oxidative chemisorption occurs through activation of the ring’s C–H bonds yielding edge-oriented 2,3-dimethylH_(2)Q. Electrochemistry and DFT results also implied that at 1-2 ML of Pd on Pt(111), hydrogen is only adsorbed on a hollow site while at 3 ML of Pd or more, atomic hydrogen may be chemisorbed on the 3-fold site or absorbed in the octahedral hole underneath the hollow site. Using Au electrodes, an unbound iron hydrogenase analogue complex studied was found to slightly catalyze the H_(2) evolution process. However, when the complex was immobilized unto the Au surface, the electrocatalytic activity was greatly improved.
273

Cobalt-mediated pentadienyl/alkyne [5+2] cycloaddition reactions

Ylijoki, Kai Erik Oskar Unknown Date
No description available.
274

Predicition of the molecular structure of ill-defined hydrocarbons using vibrational, 1H, and 13C NMR spectroscopy

Obiosa-Maife, Collins Unknown Date
No description available.
275

Structure and Catalytic Properties of Ultra-Small Ceria Nanoparticles

Huang, Xing 01 January 2014 (has links)
Cerium dioxide (ceria) is an excellent catalytic material due to its ability to both facilitate oxidation/reduction reactions as well as store/release oxygen as an oxygen buffer. The traditional approach to assess and improve ceria's catalytic behavior focuses on how efficiently O-vacancies can be generated and/or annihilated within the material, and how to extend established understandings of "bulk" ceria to further explain the greatly enhanced catalytic behavior of ultra-small ceria nanoparticles (uCNPs) with sizes less than 10 nm. Here, using density functional theory (DFT) calculations, we reexamine the atomic and electronic structures of uCNPs, especially their surface configurations. A unique picture dissimilar to the traditional point of view emerges from these calculations for the surface structure of uCNPs. uCNPs similar to those obtained by experimental synthesis and applied in catalytic environments exhibit core-shell like structures overall, with under-stoichiometric, reduced CNP "cores" and over-stoichiometric, oxidized surface "shell" constituted by various surface functional groups, e.g.,-Ox and/or -OH surface groups. Therefore, their catalytic behavior is dominated by surface chemistry rather than O-vacancies. Based on this finding, reaction pathways of two prevalent catalytic reactions, namely CO oxidation and the water-gas shift reaction over uCNPs are systematically investigated. Combined, these results demonstrate an alternative understanding of the surface structure of uCNPs, and provide new avenues to explore and enhance their catalytic behavior, which is likely applicable to other transition metal oxide nanoparticles with multivalent ions and very small sizes.
276

Theory and Modelling of Functional Materials

Kocevski, Vancho January 2015 (has links)
The diverse field of material research has been steadily expanding with a great help from computational physics, especially in the investigation of the fundamental properties of materials. This has driven the computational physics to become one of the main branches of physics, allowing for density functional theory (DFT) to develop as one of the cornerstones of material research. Nowdays, DFT is the method of choice in a great variety of studies, from fundamental properties, to materials modelling and searching for new materials. In this thesis, DFT is employed for the study of a small part of this vast pool of applications. Specifically, the microscopic characteristics of Zn1-xCdxS alloys are studied by looking into the evolution of the local structure. In addition, the way to model the growth of graphene on Fe(110) surface is discussed. The structural stability of silicon nanocrystals with various shapes is analysed in detail, as well. DFT is further used in studying different properties of semiconductor nanocrystals. The size evolution of the character of the band gap in silicon nanocrystals is investigated in terms of changes in the character of the states around the band gap. The influence of various surface impurities on the band gap, as well as on the electronic and optical properties of silicon nanocrystals is further studied. In addition, the future use of silicon nanocrystals in photovoltaic devices is examined by studying the band alignment and the charge densities of silicon nanocrystals embedded in a silicon carbide matrix. Furthermore, the electronic and optical properties of different semiconductor nanocrystals is also investigated. In the case of the CdSe/CdS and CdS/ZnS core-shell nanocrystals the influence of the nanocrystal size and different structural models on their properties is analysed. For silicon nanocrystal capped with organic ligands, the changes in the optical properties and lifetimes is thoroughly examined with changes in the type of organic ligand.
277

Electronic structure and interlayer coupling in twisted multilayer graphene

Xian, Lede 22 May 2014 (has links)
It has been shown recently that high-quality epitaxial graphene (EPG) can be grown on the SiC substrate that exhibits interesting physical properties and has great advantages for varies device applications. In particular, the multilayer graphene films grown on the C-face show rotational disorder. It is expected that the twisted layers exhibit unique new physics that is distinct from that of either single layer graphene or graphite. In this work, by combining density functional and tight-binding model calculations, we investigate the electric field and doping effects on twisted bilayer graphene (TBG), multiple layer effects on twisted triple-layer graphene, and wave packet propagation properties of TBG. Though these studies, we obtain a comprehensive description of the interesting interlayer interaction in this twisted multilayer graphene system.
278

Density Functional and Ab Initio Study of Molecular Response

Peng, Degao January 2014 (has links)
<p>Quantum chemistry methods nowadays reach its maturity with various robust ground state correlation methods. However, many problems related to response do not have satisfactory solutions. Chemical reactivity indexes are some static response to external fields and number of particle change. These chemical reactivity indexes have important chemical significance, while not all of them had analytical expressions for direct evaluations. By solving coupled perturbed self-consistent field equations, analytical expressions were obtained and verified numerically. In the particle-particle (pp) channel, the response to the pairing field can describe <italic>N&plusmn;2</italic> excitations, i.e. double ionization potentials and double electron affinities. The linear response time-dependent density-functional theory (DFT) with pairing fields is the response theory in the density-functional theory (DFT) framework to describe $N\pm 2$ excitations. Both adiabatic and dynamic kernels can be included in this response theory. The correlation energy based on this response, the correlation energy of the particle-particle random phase approximation (pp-RPA), can also be proved equivalent to the ladder approximation of the well-established coupled-cluster doubles. These connections between the response theory, <italic>ab initio</italic> methods, and Green's function theory would be beneficial for further development. Based on RPA and pp-RPA, the theory of second RPA and the second pp-RPA with restrictions can be used to capture single and double excitations efficiently. We also present a novel methods, variational fractional spin DFT, to calculate singlet-triplet energy gaps for diradicals, which are usually calculated through spin-flip response theories.</p> / Dissertation
279

New algorithm for efficient Bloch-waves calculations of orientation-sensitive ELNES

Tatsumi, Kazuyoshi, Muto, Shunsuke, Rusz, Ján 02 1900 (has links)
No description available.
280

Carbon Nanotubes : A Theoretical study of Young's modulus

Fredriksson, Tore January 2014 (has links)
Carbon nanotubes have extraordinary mechanical, electrical, thermal andoptical properties. They are harder than diamond yet exible, have betterelectrical conductor than copper, but can also be a semiconductor or evenan insulator. These ranges of properties of course make carbon nanotubeshighly interesting for many applications. Carbon nanotubes are already usedin products as hockey sticks and tennis rackets for improving strength and exibility. Soon there are mobile phones with exible screens made fromcarbon nanotubes. Also, car- and airplane bodies will probably be mademuch lighter and stronger, if carbon nanotubes are included in the construction.However, the real game changers are; nanoelectromechanical systems(NEMS) and computer processors based on graphene and carbon nanotubes.In this work, we study Young's modulus in the axial direction of carbonnanotubes. This has been done by performing density functional theorycalculations. The unit cell has been chosen as to accommodate for tubes ofdierent radii. This allows for modelling the eect of bending of the bondsbetween the carbon atoms in the carbon nanotubes of dierent radii. Theresults show that Young's modulus decreases as the radius decreases. Ineect, the Young's modulus declines from 1 to 0.8 TPa. This eect can beunderstood because the bending diminishes the pure sp^2 character of thebonds.These results are important and useful in construction, not only when usingcarbon nanotubes but also when using graphene. Our results point towardsa Young's modulus that is a material constant and, above a certain criticalvalue, only weakly dependent on the radius of the carbon nanotube.Graphene can be seen as a carbon nanotube with innite radius.

Page generated in 0.0837 seconds