• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 613
  • 171
  • 59
  • 56
  • 11
  • 9
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 1121
  • 1121
  • 1065
  • 212
  • 198
  • 174
  • 161
  • 158
  • 153
  • 146
  • 144
  • 135
  • 131
  • 117
  • 115
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Structural phase transitions in hafnia and zirconia at ambient pressure

Luo, Xuhui 26 October 2010 (has links)
In recent years, both hafnia and zirconia have been looked at closely in the quest for a high permittivity gate dielectric to replace silicon dioxide in advanced metal oxide semiconductor field effect transistors (MOSFET). Hafnium dioxide or HfO2 is chosen for its high dielectric constant (five times that of SiO2) and compatibility with stringent requirements of the Si process. As deposited, thin hafnia films are typically amorphous but turn polycrystalline after a post-deposition anneal. To control the phase composition in hafnia films understanding of structural phase transitions is a first step. In this dissertation using first principles methods we consider three phase transitions of hafnia and zirconia: monoclinic to tetragonal, tetragonal to cubic and amorphous to crystalline. Because the high surface to volume ratio in hafnia films and powders plays an important role in phase transitions, we also study the surface properties of hafnia. We discuss the mechanisms of various phase transitions and theoretically estimate the transition temperatures. We find two types of amorphous hafnia and show that they have different structural and electronic properties. The small energy barrier between the amorphous and crystalline structures is found to cause the low crystallization temperature. Moreover, we calculate work functions and surface energies for hafnia surfaces and show the surface suppression of the phase transitions. / text
42

Ligand Effects on Metal-Metal Bonding: Photoelectron Spectroscopy and Electronic Structure Calculations of Dimetal Paddlewheel Complexes

Durivage, Jason Curtis January 2011 (has links)
Paddlewheel complexes are molecules in which two interacting metal atoms are bridged by four chelating ligands. This class of complexes has a large range of electronic variability while keeping a rigid geometric structure. This variability has led to their use as catalysts, strong reductants, anti-tumor agents, and electron transfer agents. This dissertation examines the effects of changing both the dimetal core and the surrounding ligands on the electronic structure properties of the paddlewheel complexes. Examination of Bi₂(O₂CCF₃)₄, a p-orbital dimetal paddlewheel complex, provided a way to probe the orbitals that are important in metal-ligand σ bonding. The b(1g) and b(2u) ligand orbitals of Bi₂(O₂CCF₃)₄ have no dimetal orbital counterpart, unlike the case of the more familiar d-orbital dimetal paddlewheel complexes such as Mo₂(O₂CCF₃)₄. This had the effect of destabilizing these ligand orbitals compared to d-orbital paddlewheel complexes. The ligand a1g orbital in Bi₂(O₂CCF₃)₄ was also destabilized due to nodal differences in the dimetal σ orbital. The unusual coincidence of Mo-Mo σ and π ionization bands is due to a greater amount of ligand character in the Mo-Mo σ orbital compared to its ditungsten analogue, which has separate ionization bands for the σ and π bonds. A series of p-substituted dimolybdenum tetrabenzoate complexes was synthesized and studied by photoelectron spectroscopy in order to further examine the delocalization of electron density from the metals to the ligands in these complexes. A 0.89 eV shift in the δ ionization band was observed from Mo₂(O₂CPh-p-OMe) ₄ and Mo₂(O₂CPh-p-CF₃)₄. Overlap effects are the major factor causing the shift in the δ bond ionization, as the calculated charges on the molybdenum and oxygen atoms did not vary significantly on change of substituent. Molybdenum and tungsten guanidinate paddlewheel complexes have promise as good reducing agents due to their extremely low ionization energies. The solubility of the complexes poses a problem for their widespread adoption for use as reducing agents. Alkyl substituents were added to the complexes to increase their solubility. W₂(TEhpp)₄ was observed to have the lowest ionization energy at 3.71 eV (vertical ionization) and 3.40 eV (onset ionization) of any molecule yet prepared.
43

Computational Insights on Functional Materials for Clean Energy Storage : Modeling, Structure and Thermodynamics

Hussain, Tanveer January 2013 (has links)
The exponential increase in the demands of world’s energy and the devastating effects of current fossil fuels based sources has forced us to reduce our dependence on the current sources as well as finding cleaner, cheaper and renewable alternates. Being abundant, efficient and renewable, hydrogen can be opted as the best possible replacement of the diminishing and harmful fossil fuels. But the transformation towards the hydrogen-based economy is hindered by the unavailability of suitable storage medium for hydrogen. First principles calculations based on density functional theory has been employed in this thesis to investigate the structures modelling and thermodynamics of various efficient materials capable of storing hydrogen under chemisorption and physisorption mechanisms. Thanks to their high storage capacity, abundance and low cost, metal hydride (MgH2) has been considered as promising choice for hydrogen storage. However, the biggest drawback is their strong binding with the absorbed hydrogen under chemisorption, which make them inappropriate for operation at ambient conditions. Different strategies have been applied to improve the thermodynamics including doping with light and transitions metals in different phases of MgH2 in bulk form.  Application of mechanical strain along with Al, Si and Ti doping on MgH2 (001) and (100) surfaces has also been found very useful in lowering the dehydrogenation energies that ultimately improve adsorption/desorption temperatures. Secondly, in this thesis, two-dimensional materials with high surface area have been studied for the adsorption of hydrogen in molecular form (H2) under physisorption. The main disadvantage of this kind of storage is that the adsorption of H2 with these nanostructures likes graphane, silicene, silicane, BN-sheets, BC3 sheets are low and demand operation at cryogenic conditions. To enhance the H2 binding and attain high storage capacity the above-mentioned nanostructures have been functionalized with light metals (alkali, alkaline) and polylithiated species  (OLi2, CLi3, CLi4). The stabilities of the designed functional materials for H2 storage have been verified by means of molecular dynamics simulations.
44

Implementation of the SM12 Solvation Model into ADF and ADF-BAND

Peeples, Craig 20 June 2016 (has links)
Modeling systems in liquid is imperative to chemistry, as many reactions take place in liquid, and nearly all of biochemistry is in the liquid state. Solvation Model 12 (SM12) is the newest Generalized Born Approximation iteration of a series of solvation models from Minnesota, it shows great promise for accurate, description of solutions. Shown is the full implementation of SM12 in to the pure Slater Type Orbital code, the Amsterdam Density Functional (ADF) package in particular. The model performs as well as its Gaussian Type Orbital counterpart. The model has been extended to account for periodic boundary conditions, as presented by the ADF-BAND code. The extension to infinite boundaries creates interesting edge effects that need to be taken into consideration, and are accounted for through cut off approximations and a screening function to ensure the potential is well-behaved. / October 2016
45

Crystal structure prediction at high pressures : stability, superconductivity and superionicity

Nelson, Joseph Richard January 2017 (has links)
The physical and chemical properties of materials are intimately related to their underlying crystal structure: the detailed arrangement of atoms and chemical bonds within. This thesis uses computational methods to predict crystal structure, with a particular focus on structures and stable phases that emerge at high pressure. We explore three distinct systems. We first apply the ab initio random structure searching (AIRSS) technique and density functional theory (DFT) calculations to investigate the high-pressure behaviour of beryllium, magnesium and calcium difluorides. We find that beryllium fluoride is extensively polymorphic at low pressures, and predict two new phases for this compound - the silica moganite and CaCl$_2$ structures - to be stable over the wide pressure range 12-57 GPa. For magnesium fluoride, our results show that the orthorhombic `O-I' TiO$_2$ structure ($Pbca$, $Z=8$) is stable for this compound between 40 and 44 GPa. Our searches find no new phases at the static-lattice level for calcium difluoride between 0 and 70 GPa; however, a phase with $P\overline{6}2m$ symmetry is energetically close to stability over this pressure range, and our calculations predict that this phase is stabilised at high temperature. The $P\overline{6}2m$ structure exhibits an unstable phonon mode at large volumes which may signal a transition to a superionic state at high temperatures. The Group-II difluorides are isoelectronic to a number of other AB$_2$-type compounds such as SiO$_2$ and TiO$_2$, and we discuss our results in light of these similarities. Compressed hydrogen sulfide (H$_2$S) has recently attracted experimental and theoretical interest due to the observation of high-temperature superconductivity in this compound ($T_c$ = 203 K) at high pressure (155 GPa). We use the AIRSS technique and DFT calculations to determine the stable phases and chemical stoichiometries formed in the hydrogen-sulfur system as a function of pressure. We find that this system supports numerous stable compounds: H$_3$S, H$_7$S$_3$, H$_2$S, H$_3$S$_2$, H$_4$S$_3$, H$_2$S$_3$ and HS$_2$, at various pressures. Working as part of a collaboration, our predicted H$_3$S and H$_4$S$_3$ structures are shown to be consistent with XRD data for this system, with H$_4$S$_3$ identified as a major decomposition product of H$_2$S in the lead-up to the superconducting state. Calcium and oxygen are two elements of generally high terrestrial and cosmic abundance, and we explore structures of calcium peroxide (CaO$_2$) in the pressure range 0-200 GPa. Stable structures for CaO$_2$ with $C2/c$, $I4/mcm$ and $P2_1/c$ symmetries emerge at pressures below 40 GPa, which we find are thermodynamically stable against decomposition into CaO and O$_2$. The stability of CaO$_2$ with respect to decomposition increases with pressure, with peak stability occurring at the CaO B1-B2 phase transition at 65 GPa. Phonon calculations using the quasiharmonic approximation show that CaO$_2$ is a stable oxide of calcium at mantle temperatures and pressures, highlighting a possible role for CaO$_2$ in planetary geochemistry, as a mineral redox buffer. We sketch the phase diagram for CaO$_2$, and find at least five new stable phases in the pressure/temperature ranges 0 $\leq P\leq$ 60 GPa, 0 $\leq T\leq$ 600 K, including two new candidates for the zero-pressure ground state structure.
46

Partition Density Functional Theory for Semi-Infinite and Periodic Systems

Kelsie A. Niffenegger (5930087) 03 January 2019 (has links)
<div>Partition Density Functional Theory (P-DFT) is a formally exact method to find the ground-state energy and density of molecules via self-consistent calculations on isolated fragments. It is being used to improve the accuracy of Kohn-Sham DFT (KS-DFT) calculations and to lower their computational cost. Here, the method has been extended to be applicable to semi-infinite and periodic systems. This extension involves the development of new algorithms to calculate the exact partition potential, a central quantity of P-DFT. A novel feature of these algorithms is that they are applicable to systems of constant chemical potential, and not only to systems of constant electron number. We illustrate our method on one-dimensional model systems designed to mimic metal-atom interfaces and atomic chains. From extensive numerical tests on these model systems, we infer that: 1.) The usual derivative discontinuities of open-system KS-DFT are reduced (but do not disappear completely) when an atom is at a nite distance from a metallic reservoir; 2.) In situations where we do not have chemical potential equalization between fragments of a system, a new constraint for P-DFT emerges which relates the fragment chemical potentials and the combined system chemical potential; 3.) P-DFT is an ideal method for studying charge transfer and fragment interactions due to the correct ensemble treatment of fractional electron charges; 4.) Key features of the partition potential at the metalatom interface are correlated to well-known features of the underlying KS potential; and 5.) When there is chemical potential equalization between an atom and a metal surface it is interacting with, there is strong charge transfer between the metal and atom. In these cases of charge transfer the density response to an innitesimal change in the chemical potential is located almost exclusively around the atom. On the other hand, when the fragment chemical potentials do not equalize, the density response only aects the surface Friedel oscillations in the metal.</div>
47

Functional catalysts by design for renewable fuels and chemicals production

Shan, Nannan January 1900 (has links)
Doctor of Philosophy / Department of Chemical Engineering / Bin Liu / In the course of mitigating our dependence on fossil energy, it has become an urgent issue to develop unconventional and innovative technologies based on renewable energy utilization for fuels and chemicals production. Due to the lack of fundamental understanding of catalytic behaviors of the novel chemical compounds involved, the task to design and engineer effective catalytic systems is extremely challenging and time-consuming. One central challenge is that an intricate balance among catalytic reactivity, selectivity, durability, and affordability must be achieved pertinent to any successful design. In this dissertation, density functional theory (DFT), coupled with modeling techniques derived from DFT, is employed to gain insights into molecular interactions between elusive intermediates and targeted functional catalytic materials for novel electrochemical and heterogeneous catalytic processes. Two case studies, i.e., electroreduction of furfural and step-catalysis for cyclic ammonia production, will be discussed to demonstrate the capability and utility of DFT-based theoretical modeling toolkits and strategies. Transition metal cathodes such as silver, lead, and nickel were evaluated for furfuryl alcohol and 2-methylfuran production through detailed DFT modeling. Investigation of the molecular mechanisms revealed that two intermediates, mh6 and mh7 from mono-hydrogenation of furfural, are the key intermediates that will determine the product formation activities and selectivities. Nickel breaks the trends from other metals as DFT calculations suggested the 2-methylfuran formation pathway is most likely different from other cathodes. In this work, the Brønsted–Evans–Polanyi relationship, derived from DFT energy barrier calculations, has been found to be particularly reliable and computationally efficient for C-O bond activation trend predictions. To obtain the solvation effect on the adsorptions of biomass-derived compounds (e.g., furfural and glycerol), influence of explicit solvent was probed using periodic DFT calculations. The adsorptions of glycerol and its dehydrogenation intermediates at the water-platinum surface were understood via various water–adsorbate, water–water, and water–metal interactions. Interestingly, the bond-order-based scaling relationship established in solvent-free environment is found to remain valid based on our explicit solvent models. In the second case study, step-catalysis that relies on manganese’s ability to dissociate molecular nitrogen and as a nitrogen carrier emerges as an alternative route for ammonia production to the conventional Haber-Bosch process. In this collaborative project, DFT was used as the primary tool to produce the mechanistic understanding of NH3 formation via hydrogen reduction on various manganese nitride systems (e.g., Mn4N and Mn2N). Both nickel and iron dopants have the potential to facilitate NH3 formation. A broader consideration of a wide range of nitride configurations revealed a rather complex pattern. Materials screening strategies, supported by linear scaling relationships, suggested the linear correlations between NHx (x=0, 1, 2) species must be broken in the development of optimal step catalysis materials. These fundamental findings are expected to significantly guide and accelerate the experimental material design. Overall, molecular modeling based on DFT has clearly demonstrated its remarkable value beyond just a validation tool. More importantly, its unique predictive power should be prized as an avenue for scientific advance through the fundamental knowledge in novel catalysts design.
48

Mathematical modelling of solid tumour growth : a Dynamical Density Functional Theory-based model

Al-Saedi, Hayder M. January 2018 (has links)
We present a theoretical framework based on an extension of Dynamical Density Functional Theory (DDFT) to describe the structure and dynamics of cells in living tissues and tumours. DDFT is a microscopic statistical mechanical theory for the time evolution of the density distribution of interacting many-particle systems. The theory accounts for cell pair-interactions, different cell types, phenotypes and cell birth and death processes (including cell division), in order to provide a biophysically consistent description of processes bridging across the scales, including the description of the tissue structure down to the level of the individual cells. Analysis of the model is presented for a single species and a two-species cases, the latter describing competition between a cancerous and healthy cells. In suitable parameter regimes, model results are consistent with biological observations. Of particular note, divergent tumour growth behaviour, mirroring metastatic and benign growth characteristics, are shown to be dependent on the cell pair-interaction parameters.
49

Theoretical discovery of shape reactivity relationships in aluminum nanoclusters

Corum, Katharine Witkin 01 May 2016 (has links)
Keggin-based aluminum nanoclusters have been noted to be efficient sorbents for the adsorption of arsenic, copper, lead, and zinc from water. Obtaining a molecular-level understanding of the adsorption processes associated with these molecules is of fundamental importance and could pave the way for rational design strategies for water treatment. Furthermore, due to their size and the availability of experimental crystal structures, Al nanoclusters are computationally tractable at the atomistic modeling level. The adsorption of contaminants onto metal-oxide surfaces with nanoscale Keggin-type structural topologies has been established, but identification of the reactive sites and the exact binding mechanism are lacking. In more common surface studies the two main factors that affect reactivity have been found to be charge and functional group identity. Since Al nanoclusters each have a distinct shape we introduce the effects of shape as a third factor. In all the work presented in this dissertation, it is extremely apparent that the shape of the aluminum particle plays the most important role in nanoparticle reactivity studies. We first focus on the reactivity of three aluminum polycations: [Al13O4(OH)24(H2O)12]7+ (Al13), [Al30O8(OH)56(H2O)26]18+ (Al30), and [Al32O8(OH)60(H2O)30]20+ (Al32). Using outer-sphere adsorption of sulfate and chloride as probe adsorbents, density functional theory (DFT) calculations determined that the reactivity can be represented as a function of particle topology, and not functional group identity or charge. Further exploring the shape-reactivity relationship of Al30 we reveal that cations and anions have opposing trends and ion reactivity can be generalized. It is determined that all cations favor the adsorption sites on the caps of Al30 and all anions favor adsorption in the beltway (middle) region. This result is supported by the visualization of the electrostatic potential of Al30 and three-dimensional induced charge density maps. The middle of the cluster is more positive than the caps, and this promotes anion adsorption in the beltway and cation adsorption on the caps. Next we explore the reactivity of co-adsorption (outer-sphere anions and inner-sphere cations) onto Al30 through a collaborative approach. Al30 with two surface-bound Cu2+ cations (Cu2Al30-S) was experimentally crystallized in the presence of disulfonate anions; however, in the Cu2Al30-S structure the cations bind to the beltway region of the cluster. Using DFT we determined that the counter anions play a key (and governing) role in the crystallization of Cu2Al30-S. This result that outer-sphere adsorption dictates inner-sphere adsorption does not appear in surface calculations, it is unique to Keggin studies. Seeing that all anions favor adsorption to the beltway region and all cations favor adsorption to the cap region we set out to determine if any reactivity patterns can be reversed. In order to do this inner-sphere As(V) and P(V) adsorption is modeled onto Al30 through another collaborative approach. The experimental crystal structure of (TBP)2[Al2(μ4-O8)(Al28(μ2-OH)56(H2O)26)]14+ (where TBP = t-butylphosphonate (CH3)3CPO3) has been synthesized, and using DFT calculations we can alter the R-group of P(V) or the DFT As(V) analogue to see if the inner-sphere anion ever prefers to bind to the cap region instead of the beltway. We observe that no matter the intrinsic properties of the R-group the anion always prefers to bind to the beltway region, which once again shows that the shape-reactivity relationship plays a major role in Keggin based structure reactivity. Since As(V) is such a harmful ion we extend our As(V) adsorption studies to aluminum surfaces. As(V) has been experimentally shown to bind to aluminum surfaces in a bidentate binuclear configuration. By modeling a variety of configurations we can confirm and explain that the bidentate binuclear configuration is most stable due to the least amount of strain on the As(V) atom. Aluminum surfaces are common DFT models to study but are computationally expensive, due to this fact some people choose to model small Al octahedral cluster models instead. Comparing the reactivity of both systems we see a significant difference in energy magnitudes and ranges and can conclude that small Al octahedral cluster models cannot take place of aluminum surfaces. All in all, the work presented in this dissertation provides an important contribution in our understanding of Keggin based Al compounds. Keggin based compounds are very sparsely studied computationally and this work helps to fill a knowledge gap. Hopefully the insights obtained from this work can help guide future Keggin based studies.
50

Examination of 4He droplets and droplets containing impurities at zero Kelvin using a density functional approach

Brown, Ellen 01 August 2011 (has links)
Abstract Detailed in this manuscript is a methodology to model ground state properties of 4He droplets at zero pressure and zero Kelvin using a density functional theory of liquid helium. The density functional approach examined here consists of two noted functionals from the literature and corresponding mean field definitions. A mean field and trial density are defined for each system and optimized to self-consistency using a matrix diagonalization technique. Initial calculations of planar slabs are performed and demonstrate reasonable agreement with experiment and with prior studies using density functional theory. Quantum properties of droplets and droplets containing atomic dopants are calculated. Three different He-dopant potentials are examined to test the limits of the functional methods. For each impurity interaction, an average of 12 atoms were found to reside in the first solvation shell with an atomic dopant placed at the droplet center. Maximum densities in the first solvation shell reached those of solid helium as predicted by DF methods.

Page generated in 0.0899 seconds