• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 615
  • 171
  • 59
  • 56
  • 11
  • 9
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 1123
  • 1123
  • 1067
  • 213
  • 199
  • 174
  • 161
  • 158
  • 153
  • 146
  • 145
  • 135
  • 131
  • 117
  • 115
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
421

APPLICATION OF COMPUTATIONAL METHODS TO THE STUDY OF ORGANIC MACROMOLECULES AND BIOMOLECULES: STRUCTURE AND MECHANISTIC INSIGHTS IN LARGER CHEMICAL SYSTEMS

Sanan, Toby T. 03 September 2010 (has links)
No description available.
422

Accurate Calculations of Nonlinear Optical Properties Using Finite Field Methods

Mohammed, Ahmed A. K. 11 1900 (has links)
Molecular nonlinear optical (NLO) properties are extensively studied using both theory and experiment because of their use in myriad applications. Experimental measurements of the most interesting molecules’ NLO properties are difficult, so experimental data for molecules with desirable NLO properties is scarce. Theoretical tools don’t suffer from the same limitations and can provide significant insights into the physico-chemical phenomena underlying the nonlinear responses, can help in interpreting response behaviour of molecules, and can guide design the materials with desirable response properties. Here, I present my work on developing methods for accurately calculating the NLO properties of molecules using the finite field (FF) approach. The first chapter provides a background for the finite field and electronic structure methods used in this dissertation. Chapter two is a thorough investigation of the finite field method. The limitations of the method are highlighted and the optimal conditions for overcoming its drawbacks and obtaining meaningful and accurate results are described. Chapter three presents the first systematic study of the dependence of optimal field strengths on molecular descriptors. The first protocol for predicting the optimal field for the second hyperpolarizability is presented and successfully tested, and the dependence of the optimal field strength for the first hyperpolarizability on the molecular structure is investigated. Chapter four is an assessment of various DFT functionals in calculating the second hyperpolarizabilities of organic molecules and oligomers. This study shows the limitations of conventional DFT methods and the importance of electron correlation to response properties. In chapter five we present a new method of calculating NLO properties using a rational function model that is shown to be more robust and have lower computational cost than the traditional Taylor expansion. Finally, chapter six includes a summary of the thesis and an overview of future work. / Thesis / Doctor of Philosophy (PhD)
423

STACKING DEFECTS IN GaP NANOWIRES: OPTICAL AND ELECTRONIC EFFECTS AND ADSORPTION OF CATECHOL GROUP ONTO METAL OXIDE SURFACE

Gupta, Divyanshu January 2019 (has links)
The research performed aims to develop a deeper understanding and prediction of behaviour of complex chemical and physical systems using density functional theory (DFT) modelling complemented by experimental techniques. We focus on phenomena relevant to practical applications of semiconducting materials. Semiconductor nanowires, produced by the vapor-liquid-solid method are being considered for applications in photo sensors, field effect transistors, light emitting diodes (LEDs) and energy harvesting devices. In particular, semiconductor nanowire based photovoltaic devices show potential for lower cost due to less material utilization and greater energy conversion efficiency arising from enhanced photovoltage or photocurrent due to hot carrier or multiexciton phenomena enhanced light absorption, compared to conventional thin film devices. Further, freedom from lattice matching requirements due to strain accommodation at the nanowire surfaces enable compatibility with a wide variety of substrates including Silicon. Thus understanding and improving the optoelectronic properties of nanowires is of great interest. In the first paper, we study the effect of planar defects on optoelectronic properties of nanowire based semiconductor devices. Specifically, we were interested in investing the origin of various features observed in the photoluminisence (PL) spectrum of GaP nanowire using density functional modelling, which are not well understood. In the second paper, we work to model bonding characteristics during a chemical synthesis. We focus on the synthesis of nanoparticles for supercapacitor application. In the past decade, comprehensive research has been emphasized on manganese oxides for electrochemical supercapacitor (ECS) applications. Mn3O4 has gained significant interest due to its compatibility with capping agents and the unique spinel structure allows for potential modifications with other cations. Many metal oxide synthesis techniques are based on aqueous processing. The synthesized particles are usually dried and redispersed in organic solvents to incorporate water-insoluble additives such as binders to fabricate films and devices. However, during the drying step nano-structures are highly susceptible to agglomeration, which can be attributed to the condensation reactions occurring between particles and reduction in surface energy. Poor electrolyte access due to agglomeration and low intrinsic conductivity of Mn3O4 are detrimental to the performance of Mn 3O4 electrode especially at high active mass loadings. Numerous attempts have focused on controlling size and morphology of Mn3O4 nanostructures using capping agents, which have strong adhesion to particles surface to inhibit agglomeration. Catechol containing molecules have been used for dispersion of metallic nanoparticles and fabrication of composite thin films, resulted in narrow size distribution of nanoparticles and strong adhesion to substrates. Despite the experimental results showing good adsorption of catechol group to metal atoms, the mechanism is unclear since it is highly influenced by synthesis parameters. We use Infrared spectroscopy in conjugation with density functional modelling to understand the binding mechanism of 3,4 dihydroxy benzaldehyde onto Mn3O4 surface. / Thesis / Master of Applied Science (MASc)
424

SELF-ORGANIZATION OF ORGANIC MOLECULES

Martin, Jacob 27 September 2022 (has links)
No description available.
425

Multiscale Modeling of Effects of Solute Segregation and Oxidation on Grain Boundary Strength in Ni and Fe Based Alloys

Xiao, Ziqi 13 January 2023 (has links)
Nickel and iron-based alloys are important structure and cladding materials for modern nuclear reactors due to their high mechanical properties and high corrosion resistance. To understand the radiative and corrosive environment influence on the mechanical strength, computer simulation works are conducted. In particular, this dissertation is focused on multiscale modeling of the effects of radiation-induced solute segregation and oxidation on grain boundary (GB) strength in nickel-based and iron-based alloys. Besides the atomistic scale density functional theory (DFT) based calculations of GB strength, continuum-scale cohesive zone model (CZM) is also used to simulate intergranular fracture at the microstructure scale. First, the effects of solute or impurity segregation at GBs on the GB strength are studied. Thermal annealing or radiation induced segregation of solute and impurity elements to GBs in metallic alloys changes GB chemistry and thus can alter the GB cohesive strength. To understand the underlying mechanisms, first principles based DFT calculations are conducted to study how the segregation of substitutional solute and impurity elements (Al, C, Cr, Cu, P, Si, Ti, Fe, which are present in Ni-based X-750 alloys) influences the cohesive strength of Σ3(111),Σ3(112),Σ5(210) and Σ5(310) GBs in Ni. It is found that C and P show strong embrittlement potencies while Cr and Ti can strengthen GBs in most cases. Other solute elements, including Si, have mixed but insignificant effects on GB strength. In terms of GB character effect, these solute and impurity elements modify the GB strength of the Σ5(210) GB most and that of the Σ3(111) least. Detailed analyses of solute-GB chemical interactions are conducted using electron localization function, charge density map, partial density of states, and Bader charge analysis. The results suggest that the bond type and charge transfer between solutes and Ni atoms at GBs may play important roles on affecting the GB strength. For non-metallic solute elements (C, P, Si), their interstitial forms are also studied but the effects are weaker than their substitutional counterparts. Nickel-base alloys are also susceptible to stress corrosion cracking (SCC), in which the fracture mainly propagates along oxidized grain boundaries (GBs). To understand how oxidation degrades GB strength, the next step is to use density functional theory (DFT) calculations to study three types of oxidized interfaces: partially oxidized GBs, fully oxidized GBs, and oxide/metal interface, using Ni as a model system. For partially oxidized GBs, both substitutional and interstitial oxygen atoms of different concentrations are inserted at three Ni GBs: Σ3(111) coherent twin, Σ3(112) incoherent twin, and Σ5(210). Simulation results show that the GB strength decreases almost linearly with the increasing oxygen coverage at all GBs. Typically, substitutional oxygen causes a stronger embrittlement effect than interstitial oxygen, except at the Σ3(111). In addition, the oxygen-induced mechanical distortion has a much smaller contribution to the embrittlement than its chemical effect, except for oxygen interstitials at the Σ3(111). For the fully oxidized GBs, three NiO GBs of the same types are studied. Although the strengths of Σ3(112) and Σ5(210) NiO GBs are much weaker than the Ni counterparts, the Σ3(111) NiO GB has a higher strength than that in Ni, indicating that Σ3(111) GB may be difficult to fracture during SCC. Finally, the strength of a Ni/NiO interface is found to be the weakest among all interfaces studied, suggesting the metal/oxide interface could be a favorable crack initiation site when the tensile stress is low. Furthermore, the effects of co-segregation of oxygen and solute/impurity elements on GB strength are studied by DFT, using the 5(210) GB in an face-centered-cubic (FCC) Fe as a model system. Four elements (Cr, Ni, P, Si) that are commonly present in stainless steels are selected. Regarding the effects of single elements on GB strength, Ni and Cr are found to the increase the GB strength, while both P and Si have embrittlement effects. When each of them is combined with oxygen at the GB, the synergetic effect can be different from the linear sum of individual contributions. The synergetic effect also depends on the spatial arrangement of solute elements and oxygen. If they are aligned on the same plane at the GB, the synergetic effect is similar to the linear sum, although P and Si show stronger embrittlement potencies when they combine with both interstitial and substitutional oxygen. When they are arranged on a trans-plane structure, only nickel combined with oxygen show larger embrittlement potencies than the linear sum in all cases. Crystal Orbital Hamilton Populations analysis of bonding and anti-bonding states is conducted to interpret how the interaction between solutes and oxygen impacts GB strength. Finally, the continuum-scale CZM method, which is based on the bilinear mixed mode traction separation law, is used to model SCC-induced intergranular fracture in polycrystalline Ni and Fe based alloys in the MOOSE framework. The previous DFT results are used to justify the input parameters for the oxidation-induced GB strength degradation. In this study, it is found that the crack path does not always propagate along the weak GBs. As expected, the fracture prefers to occur at the GB orientations perpendicular to the loading direction. In addition, triple junctions can arrest or deflect fracture propagation, which is consistent with experimental observations. Simulation results also indicate that percolated weak GBs will lead to a much lower fracture stress compared to the discontinuous ones. / Doctor of Philosophy / Iron and Nickel based alloys are important structural materials for nuclear reactors due to their good mechanical properties, corrosion resistance, and radiation resistance. Under radiation and corrosive conditions, those alloys are susceptible to radiation induced segregation (RIS) and stress corrosion cracking (SCC). This dissertation is mainly focused on understanding the influence of the two effects on grain boundary (GB) strength. Systematic atomistic scale density functional theory (DFT) simulations are applied for the nickel and iron systems. Based on the DFT results, cohesive zone model is utilized for the continuum scale fracture simulation in nickel and iron polycrystal. First, DFT calculations are conducted for studying the RIS effect on the GB strength in nickel. Al, Cr, Cu, C, Si, P, Fe, and Ti are chosen as segregated element. Σ3(111), Σ3(112), Σ5(210), Σ5(310) four types of GBs are built for GB strength calculations. It is found that substitutional C and P always embrittle the GB, while substitutional Ti and Cr can strengthen the GB in most cases. Partial density of states (PDOS) analysis indicates the formation of C-Ni and P-Ni covalent bonds is the possible reason for their embrittlement effects. Bader charge analysis shows negatively charged elements likely reduce the GB strength. Interstitial element segregation is applied for non-metal elements (C, P, and Si). The results indicate interstitial elements have weaker effects than substitution ones. On the next stage to study the SCC effect, DFT calculations are performed for nickel Σ3(111), Σ3(112), and Σ5(210) GBs with difference oxygen concentration and oxygen incorporation types. Besides partially oxidized GBs, fully oxidized GBs (NiO GBs) and metal-oxide interface are also constructed for comparison. Simulation results show that the GB strength decreases nearly monotonically as oxygen concentration goes up. Typically, substitution oxygen causes a larger embrittlement effect than interstitial oxygen except at Σ3(111). It is found that the large mechanical distortion in this coherent twin GB contributes significantly to the GB strength drop. NiO GBs can be weak (Σ3(112),Σ5(210)) or strong (Σ3(111)). NiO/Ni interface shows lowest strength compared with partially and fully oxidized GBs, indicating the importance of the metal-oxide interface in the SCC process. Furthermore, the combined effects between segregated elements and oxygen are studied in face center cubic (FCC) iron system. In this part only Σ5(210) GB is selected with substitutional Cr, Ni, P, and Si as segregated elements. The results of single element effects show Cr can strength the GB while P has an opposite effect. Other two elements show little effect. For the co-segregation effects, the trans-plane structures have larger embrittlement potencies than in-plane ones for Ni, suggesting the GB strength can also be affected by the spatial arrangement of segregated elements. Finally, cohesive zone model is applied for fracture simulations in polycrystalline nickel and iron under tensile loading condition. It is found that intergranular fracture depends on both GB strength and orientation. GBs perpendicular to the loading direction have higher chances to crack. It is also found the percolated weak GBs induce larger strength drop than the discontinuous ones.
426

Examining Topological Insulators and Topological Semimetals Using First Principles Calculations

Villanova, John William 30 April 2018 (has links)
The importance and promise that topological materials hold has been recently underscored by the award of the Nobel Prize in Physics in 2016 ``for theoretical discoveries of topological phase transitions and topological phases of matter." This dissertation explores the novel qualities and useful topologically protected surface states of topological insulators and semimetals. Topological materials have protected qualities which are not removed by weak perturbations. The manifestations of these qualities in topological insulators are spin-momentum-locked surface states, and in Weyl and Dirac semimetals they are unconventional open surface states (Fermi arcs) with anomalous electrical transport properties. There is great promise in utilizing the topologically protected surface states in electronics of the future, including spintronics, quantum computers, and highly sensitive devices. Physicists and chemists are also interested in the fundamental physics and exotic fermions exhibited in topological materials and in heterostructures including them. Chapter 1 provides an introduction to the concepts and methods of topological band theory. Chapter 2 investigates the spin and spin-orbital texture and electronic structures of the surface states at side surfaces of a topological insulator, Bi2Se3, by using slab models within density functional theory. Two representative, experimentally achieved surfaces are examined, and it is shown that careful consideration of the crystal symmetry is necessary to understand the physics of the surface state Dirac cones at these surfaces. This advances the existing literature by properly taking into account surface relaxation and symmetry beyond what is contained in effective bulk model Hamiltonians. Chapter 3 examines the Fermi arcs of a topological Dirac semimetal (DSM) in the presence of asymmetric charge transfer, of the kind which would be present in heterostructures. Asymmetric charge transfer allows one to accurately identify the projections of Dirac nodes despite the existence of a band gap and to engineer the properties of the Fermi arcs, including spin texture. Chapter 4 investigates the effect of an external magnetic field applied to a DSM. The breaking of time reversal symmetry splits the Dirac nodes into topologically charged Weyl nodes which exhibit Fermi arcs as well as conventionally-closed surface states as one varies the chemical potential. / Ph. D.
427

The Impact of Computational Methods on Transition Metal-containing Species

Wang, Jiaqi (Physical chemistry researcher) 12 1900 (has links)
Quantum chemistry methodologies can be used to address a wide variety of chemical problems. Key to the success of quantum chemistry methodologies, however, is the selection of suitable methodologies for specific problems of interest, which often requires significant assessment. To gauge a number of methodologies, the utility of density functionals (BLYP, B97D, TPSS, M06L, PBE0, B3LYP, M06, and TPSSh) in predicting reaction energetics was examined for model studies of C-O bond activation of methoxyethane and methanol. These species provide excellent representative examples of lignin degradation via C-O bond cleavage. PBE0, which performed better than other considered DFT functionals, was used to investigate late 3d (Fe, Co, and Ni), 4d (Ru, Rh, and Pd), and 5d (Re, Os, and Ir) transition metal atom mediated Cβ -O bond activation of the β–O–4 linkage of lignin. Additionally, the impact of the choice of DFT functionals, basis sets, implicit solvation models, and layered quantum chemical methods (i.e., ONIOM, Our Own N-layered Integrated molecular Orbital and molecular Mechanics) was investigated for the prediction of pKa for a set of Ni-group metal hydrides (M = Ni, Pd, and Pt) in acetonitrile. These investigations have provided insight about the utility of a number of theoretical methods in the computation of thermodynamic properties of transition metal hydrides in solution. As single reference wavefunction methods commonly perform poorly in describing molecular systems that involve bond-breaking and forming or electronic near-degeneracies and are typically best described with computationally costly multireference wavefunction-based methods, it is imperative to a priori analyze the multireference character for molecular systems so that the proper methodology choice is applied. In this work, diagnostic criteria for assessing the multireference character of 4d transition metal-containing molecules was investigated. Four diagnostics were considered in this work, including the weight of the leading configuration of the CASSCF wavefunction, C02; T1, the Frobenius norm of the coupled cluster amplitude vector related to single excitations and D1, the matrix norm of the coupled cluster amplitude vector arising from coupled cluster calculations; and the percent total atomization energy, %TAE. This work demonstrated the need to have different diagnostic criteria for 4d molecules than for main group molecules.
428

Computational and Data-Driven Design of Perturbed Metal Sites for Catalytic Transformations

Huang, Yang 23 May 2024 (has links)
We integrate theoretical, computational and data-driven approaches for the sake of understanding, design and discovery of metal based catalysts. Firstly, we develop theoretical frameworks for predicting electronic descriptors of transition and noble metal alloys, including a physics model of d-band center, and a tight-binding theory of d-band moments to systematically elucidate the distinct electronic structures of novel catalysts. Within this framework, the hybridization of semi-empirical theories with graph neural network and attribution analysis enables accurate prediction equipped with mechanistic insights. In addition, novel physics effect controlling surface reactivity beyond conventional understanding is uncovered. Secondly, we develop a computational and data-driven framework to model high entropy alloy (HEA) catalysis, incorporating thermodynamic descriptor-based phase stability evaluation, surface segregation modeling by deep learning potential-driven molecular simulation and activity prediction through machine learning-embedded electrokinetic model. With this framework, we successfully elucidate the experimentally observed improved activity of PtPdCuNiCo HEA in oxygen reduction reaction. Thirdly, a Bayesian optimization framework is employed to optimize racemic lactide polymerization by searching for stereoselective aluminum (Al) -complex catalysts. We identified multiple new Al-complex molecules that catalyzed either isoselective or heteroselective polymerization. In addition, feature attribution analysis uncovered mechanistically meaningful ligand descriptors that can access quantitative and predictive models for catalyst development. / Doctor of Philosophy / In addressing the critical issues of climate change, energy scarcity, and pollution, the drive towards a sustainable economy has made catalysis a key area of focus. Computational chemistry has revolutionized our understanding of catalysts, especially in identifying and analyzing their active sites. Furthermore, the integration of open-access data and advanced computing has elevated data science as a crucial component in catalysis research. This synergy of computational and data-driven approaches is advancing the development of innovative catalytic materials, marking a significant stride in tackling environmental challenges. In my PhD research, I mainly work on the development of computational and data-driven methods for better understanding, design and discovery of catalytic materials. Firstly, I develop physics models for people to intuitively understand the reactivity of transition and noble metal catalysts. Then I embed the physics models into deep learning models for accurate and insightful predictions. Secondly, for a class of complex metal catalysts called high-entropy alloy (HEA) which is hard to model, I develop a modeling framework by hybridizing computational and data-driven approaches. With this framework, we successfully elucidate the experimentally observed improved activity of PtPdCuNiCo HEA in oxygen reduction reaction which is a key reaction in fuel cell technology. Thirdly, I develop a framework to virtually screen catalyst molecules to optimize polymerization reaction and provide potential candidates to our experimental collaborator to synthesize. Our collaboration leads to the discovery of novel high-performance molecular catalysts.
429

Density distribution of nuclei: From charge radii to bubbles in Covariant Density Functional Theory (CDFT)

Perera, Udeshika C. 10 May 2024 (has links) (PDF)
This dissertation applies covariant density functional theory (CDFT), one of the modern theoretical approaches for describing finite nuclei and neutron stars, to investigate the density distribution of nuclei, which is a manifestation of the nodal structure of the single-particle states in physical phenomena, including charge radii and bubbles. A systematic global investigation of differential charge radii has been performed within the CDFT framework for the first time. Available experimental data is compared with theoretical charge radii across the neutron shell closures at N = 28, 50, 82, and 126. Odd-even staggering (OES) in charge radii are believed to be primarily caused by the pairing. Our research proposes a new approach where a considerable contribution to OES in charge radii is provided by the fragmentation of the single-particle content of the ground state in odd-mass nuclei due to particle-vibration coupling. The proton-neutron interaction explained with the nodal structure of the products of the proton and neutron wave functions. However, proton core is responsible for a major contribution to the buildup of differential charge radii. This interaction between protons and neutrons causes a rearrangement of the single-particle density of occupied proton states, which affects the charge radii. According to our microscopic analysis, the shape of the proton potential, the overall proton density, and the energies of the single-particle proton states are all influenced by self-consistency effects, but they have a minimal impact on the differential charge radii. A detailed and microscopic analysis of bubble physics strongly suggests that single-particle processes are primarily responsible for the creation of bubble shapes in superheavy nuclei. The creation of bubble structure is also influenced by nuclear saturation processes and self-consistency effects, and it is dependent on the availability of low-�� single-particle states for occupation since single-particle densities. For the first time, we investigated how nuclear bubbles are formed in the central classically prohibited area at the bottom of the wine bottle potentials, resulting in decreased s state densities at r = 0.
430

Crystal Structure Prediction and Isostructurality of Three Small Molecule

Asmadi, Aldi, Kendrick, John, Leusen, Frank J.J. January 2010 (has links)
No / A crystal structure prediction (CSP) study of three small, rigid and structurally related organic compounds (differing only in the position and number of methyl groups) is presented. A tailor-made force field (TMFF; a non-transferable force field specific for each molecule) was constructed with the aid of a dispersion-corrected density functional theory method (the hybrid method). Parameters for all energy terms in each TMFF were fitted to reference data generated by the hybrid method. Each force field was then employed during structure generation. The experimentally observed crystal structures of two of the three molecules were found as the most stable crystal packings in the lists of their force-field-optimised structures. A number of the most stable crystal structures were re-optimised with the hybrid method. One experimental crystal structure was still calculated to be the most stable structure, whereas for another compound the experimental structure became the third most stable structure according to the hybrid method. For the third molecule, the experimentally observed polymorph, which was found to be the fourth most stable form using its TMFF, became the second most stable form. Good geometrical agreements were observed between the experimental structures and those calculated by both methods. The average structural deviation achieved by the TMFFs was almost twice that obtained with the hybrid method. The TMFF approach was extended by exploring the accuracy of a more general TMFF (GTMFF), which involved fitting the force-field parameters to the reference data for all three molecules simultaneously. This GTMFF was slightly less accurate than the individual TMFFs but still of sufficient accuracy to be used in CSP. A study of the isostructural relationships between these molecules and their crystal lattices revealed a potential polymorph of one of the compounds that has not been observed experimentally and that may be accessible in a thorough polymorph screen, through seeding, or through the use of a suitable tailor-made additive.

Page generated in 0.1095 seconds