• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 49
  • 7
  • 6
  • 3
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 89
  • 89
  • 18
  • 17
  • 17
  • 15
  • 14
  • 13
  • 12
  • 12
  • 12
  • 11
  • 11
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

A new method for computing anharmonic rovibrational densities of states of interstellar and atmospheric clusters at arbitrary angular momenta

Sarah Windsor Unknown Date (has links)
A new methodology is developed to calculate density of states of interstellar and atmospheric clusters that takes account of their loosely bound nature and incorporates kinetically important angular momentum constraints explicitly. The method is based on classical phase space integration for the intermonomer modes of the cluster with imposition of the constraints of selected total energy and total angular momentum. It achieves considerable efficiency via essentially analytic evaluation of the momentum space integrals coupled with efficient Monte Carlo sampling of configurations. The derivation for the equation for the density of states is outlined and all steps in the simplification of the accessible momentum space volume are detailed. The method is tested rigorously against an entirely analytic result obtained for the ideal case of a dimer with spherical top fragments and no interaction potential. Interstellar applications of the new approach are presented for (HCN)2 and (CO)2. The new intermononmer density of states has been integrated over metastable states to obtain the intermonomer partition function, which in turn is used to calculate the metastable equilibrium constants for interstellar clusters, which in turn is used tocalculate the second order rate constant of overall dimer formation in the interstellar environment. Atmospheric applications of the new approach are presented for (H2O)2. The new intermonomer density of states is convoluted with the intramonomer density of states to obtain the convoluted density of states. This convoluted density of states is then integrated over total energy and angular momentum to obtain the anharmonic partition function, which in turn is used to calculate the equilibrium constant for atmospheric clusters, which in turn is used to calculate the third order rate constant for overall dimer formation in the atmospheric environment. Kinetic quantities are also calculated with the intermonomer and convoluted density of states for interstellar and atmospheric clusters, respectively. These densities of states are combined with RRKM theory to compute unimolecular dissociation rate constants, which are then averaged with respect to the thermal capture flux distribution to compute average lifetimes as a function of temperature.
22

A new method for computing anharmonic rovibrational densities of states of interstellar and atmospheric clusters at arbitrary angular momenta

Sarah Windsor Unknown Date (has links)
A new methodology is developed to calculate density of states of interstellar and atmospheric clusters that takes account of their loosely bound nature and incorporates kinetically important angular momentum constraints explicitly. The method is based on classical phase space integration for the intermonomer modes of the cluster with imposition of the constraints of selected total energy and total angular momentum. It achieves considerable efficiency via essentially analytic evaluation of the momentum space integrals coupled with efficient Monte Carlo sampling of configurations. The derivation for the equation for the density of states is outlined and all steps in the simplification of the accessible momentum space volume are detailed. The method is tested rigorously against an entirely analytic result obtained for the ideal case of a dimer with spherical top fragments and no interaction potential. Interstellar applications of the new approach are presented for (HCN)2 and (CO)2. The new intermononmer density of states has been integrated over metastable states to obtain the intermonomer partition function, which in turn is used to calculate the metastable equilibrium constants for interstellar clusters, which in turn is used tocalculate the second order rate constant of overall dimer formation in the interstellar environment. Atmospheric applications of the new approach are presented for (H2O)2. The new intermonomer density of states is convoluted with the intramonomer density of states to obtain the convoluted density of states. This convoluted density of states is then integrated over total energy and angular momentum to obtain the anharmonic partition function, which in turn is used to calculate the equilibrium constant for atmospheric clusters, which in turn is used to calculate the third order rate constant for overall dimer formation in the atmospheric environment. Kinetic quantities are also calculated with the intermonomer and convoluted density of states for interstellar and atmospheric clusters, respectively. These densities of states are combined with RRKM theory to compute unimolecular dissociation rate constants, which are then averaged with respect to the thermal capture flux distribution to compute average lifetimes as a function of temperature.
23

A new method for computing anharmonic rovibrational densities of states of interstellar and atmospheric clusters at arbitrary angular momenta

Sarah Windsor Unknown Date (has links)
A new methodology is developed to calculate density of states of interstellar and atmospheric clusters that takes account of their loosely bound nature and incorporates kinetically important angular momentum constraints explicitly. The method is based on classical phase space integration for the intermonomer modes of the cluster with imposition of the constraints of selected total energy and total angular momentum. It achieves considerable efficiency via essentially analytic evaluation of the momentum space integrals coupled with efficient Monte Carlo sampling of configurations. The derivation for the equation for the density of states is outlined and all steps in the simplification of the accessible momentum space volume are detailed. The method is tested rigorously against an entirely analytic result obtained for the ideal case of a dimer with spherical top fragments and no interaction potential. Interstellar applications of the new approach are presented for (HCN)2 and (CO)2. The new intermononmer density of states has been integrated over metastable states to obtain the intermonomer partition function, which in turn is used to calculate the metastable equilibrium constants for interstellar clusters, which in turn is used tocalculate the second order rate constant of overall dimer formation in the interstellar environment. Atmospheric applications of the new approach are presented for (H2O)2. The new intermonomer density of states is convoluted with the intramonomer density of states to obtain the convoluted density of states. This convoluted density of states is then integrated over total energy and angular momentum to obtain the anharmonic partition function, which in turn is used to calculate the equilibrium constant for atmospheric clusters, which in turn is used to calculate the third order rate constant for overall dimer formation in the atmospheric environment. Kinetic quantities are also calculated with the intermonomer and convoluted density of states for interstellar and atmospheric clusters, respectively. These densities of states are combined with RRKM theory to compute unimolecular dissociation rate constants, which are then averaged with respect to the thermal capture flux distribution to compute average lifetimes as a function of temperature.
24

A new method for computing anharmonic rovibrational densities of states of interstellar and atmospheric clusters at arbitrary angular momenta

Sarah Windsor Unknown Date (has links)
A new methodology is developed to calculate density of states of interstellar and atmospheric clusters that takes account of their loosely bound nature and incorporates kinetically important angular momentum constraints explicitly. The method is based on classical phase space integration for the intermonomer modes of the cluster with imposition of the constraints of selected total energy and total angular momentum. It achieves considerable efficiency via essentially analytic evaluation of the momentum space integrals coupled with efficient Monte Carlo sampling of configurations. The derivation for the equation for the density of states is outlined and all steps in the simplification of the accessible momentum space volume are detailed. The method is tested rigorously against an entirely analytic result obtained for the ideal case of a dimer with spherical top fragments and no interaction potential. Interstellar applications of the new approach are presented for (HCN)2 and (CO)2. The new intermononmer density of states has been integrated over metastable states to obtain the intermonomer partition function, which in turn is used to calculate the metastable equilibrium constants for interstellar clusters, which in turn is used tocalculate the second order rate constant of overall dimer formation in the interstellar environment. Atmospheric applications of the new approach are presented for (H2O)2. The new intermonomer density of states is convoluted with the intramonomer density of states to obtain the convoluted density of states. This convoluted density of states is then integrated over total energy and angular momentum to obtain the anharmonic partition function, which in turn is used to calculate the equilibrium constant for atmospheric clusters, which in turn is used to calculate the third order rate constant for overall dimer formation in the atmospheric environment. Kinetic quantities are also calculated with the intermonomer and convoluted density of states for interstellar and atmospheric clusters, respectively. These densities of states are combined with RRKM theory to compute unimolecular dissociation rate constants, which are then averaged with respect to the thermal capture flux distribution to compute average lifetimes as a function of temperature.
25

A new method for computing anharmonic rovibrational densities of states of interstellar and atmospheric clusters at arbitrary angular momenta

Sarah Windsor Unknown Date (has links)
A new methodology is developed to calculate density of states of interstellar and atmospheric clusters that takes account of their loosely bound nature and incorporates kinetically important angular momentum constraints explicitly. The method is based on classical phase space integration for the intermonomer modes of the cluster with imposition of the constraints of selected total energy and total angular momentum. It achieves considerable efficiency via essentially analytic evaluation of the momentum space integrals coupled with efficient Monte Carlo sampling of configurations. The derivation for the equation for the density of states is outlined and all steps in the simplification of the accessible momentum space volume are detailed. The method is tested rigorously against an entirely analytic result obtained for the ideal case of a dimer with spherical top fragments and no interaction potential. Interstellar applications of the new approach are presented for (HCN)2 and (CO)2. The new intermononmer density of states has been integrated over metastable states to obtain the intermonomer partition function, which in turn is used to calculate the metastable equilibrium constants for interstellar clusters, which in turn is used tocalculate the second order rate constant of overall dimer formation in the interstellar environment. Atmospheric applications of the new approach are presented for (H2O)2. The new intermonomer density of states is convoluted with the intramonomer density of states to obtain the convoluted density of states. This convoluted density of states is then integrated over total energy and angular momentum to obtain the anharmonic partition function, which in turn is used to calculate the equilibrium constant for atmospheric clusters, which in turn is used to calculate the third order rate constant for overall dimer formation in the atmospheric environment. Kinetic quantities are also calculated with the intermonomer and convoluted density of states for interstellar and atmospheric clusters, respectively. These densities of states are combined with RRKM theory to compute unimolecular dissociation rate constants, which are then averaged with respect to the thermal capture flux distribution to compute average lifetimes as a function of temperature.
26

A new method for computing anharmonic rovibrational densities of states of interstellar and atmospheric clusters at arbitrary angular momenta

Sarah Windsor Unknown Date (has links)
A new methodology is developed to calculate density of states of interstellar and atmospheric clusters that takes account of their loosely bound nature and incorporates kinetically important angular momentum constraints explicitly. The method is based on classical phase space integration for the intermonomer modes of the cluster with imposition of the constraints of selected total energy and total angular momentum. It achieves considerable efficiency via essentially analytic evaluation of the momentum space integrals coupled with efficient Monte Carlo sampling of configurations. The derivation for the equation for the density of states is outlined and all steps in the simplification of the accessible momentum space volume are detailed. The method is tested rigorously against an entirely analytic result obtained for the ideal case of a dimer with spherical top fragments and no interaction potential. Interstellar applications of the new approach are presented for (HCN)2 and (CO)2. The new intermononmer density of states has been integrated over metastable states to obtain the intermonomer partition function, which in turn is used to calculate the metastable equilibrium constants for interstellar clusters, which in turn is used tocalculate the second order rate constant of overall dimer formation in the interstellar environment. Atmospheric applications of the new approach are presented for (H2O)2. The new intermonomer density of states is convoluted with the intramonomer density of states to obtain the convoluted density of states. This convoluted density of states is then integrated over total energy and angular momentum to obtain the anharmonic partition function, which in turn is used to calculate the equilibrium constant for atmospheric clusters, which in turn is used to calculate the third order rate constant for overall dimer formation in the atmospheric environment. Kinetic quantities are also calculated with the intermonomer and convoluted density of states for interstellar and atmospheric clusters, respectively. These densities of states are combined with RRKM theory to compute unimolecular dissociation rate constants, which are then averaged with respect to the thermal capture flux distribution to compute average lifetimes as a function of temperature.
27

Phase stability and electronic structures of perovskite and organic optoelectronic materials via first-principle calculations

Luo, Heng 12 March 2016 (has links)
Mixed ionic and electronic conductor oxides, in particular La1-xSrxCoyFe1-yO3-d (LSCF), have been widely used as the cathode materials in solid oxide fuel cells for high-temperature energy applications. The focus of this thesis is primarily on constructing the instability phase diagram of Sr segregations on LSCF surfaces at the experimentally relevant temperatures and oxygen partial pressures using the first-principles density functional theory (DFT). A generic first-principles free-energy functional is developed to obtain the nonstoichiometric oxygen vacancy concentrations for the bulk and surface phases. These results agree well with the corresponding thermo-gravimetry measurements, and furthermore suggest that the oxygen vacancies are energetically stabilized at surfaces for all temperatures and oxygen partial pressures, while such surface stabilization effects become stronger at higher temperatures and lower oxygen partial pressures. Based on these nonstoichiometric oxygen vacancy predictions, we construct the free-energy phase diagrams of the Sr-segregation reaction as a function of temperature, oxygen partial pressure, and CO2 partial pressure for both the bulk and surface LSCF phases. Our results suggest that Sr segregations strongly accumulate towards the LSCF surface phase where the oxygen vacancy nonstoichiometries are abundant. Our results also indicate that the Sr segregation reactions are significantly enhanced at high temperatures, low oxygen partial pressures, and high CO2 partial pressures. The computed reaction temperature ranges are consistent with the total reflection X-ray fluorescence (TXRF) measurements.
28

Real-Space Visualization of Organic Molecular Electronic Structure: Scanning Tunneling Microscopy and Spectroscopy

Taber, Benjamen 06 September 2018 (has links)
Organic electronics are becoming an increasingly important part of the semiconductor industry, with myriad applications enabled by their low cost, solution processability, and electrical conductivity. Charge transport in electronic applications involving organic semiconductor materials depends strongly on the electronic properties of nanoscale interfaces. Local variations in molecular environments can have a significant impact on the interfacial electronic properties, and subsequently the organic semiconductor electronic structure. Here, we use scanning tunneling microscopy and spectroscopy, supported by theoretical calculations, to investigate the impact of the local adsorption environment on the local density of states of oligothiophenes, carbon nanohoops, and carbon nanotubes. First, we present work showing that, for alkyl-substituted quaterthiophenes, molecular packing and electronic structure at interfaces differ substantially from the bulk, and a significant degree of structural and electronic variation occurs even in this relatively simple system. Then, we report on investigations of longer alkyl-substituted oligothiophenes, were we found a variety of planar molecular conformations that surprising exhibited similar, particle-in-a-box-like progressions of unoccupied molecular orbitals. Next, we share our research that found, for the first time, metal surface electrons confined within single adsorbed molecules. Finally, we study the impact of electrostatic defects in both metal and dielectric substrates on single-walled carbon nanotubes. The research presented in this dissertation increases our understanding of organic semiconductor interfaces and the impact of said interfaces on local molecular electronic structure, thereby aiding future organic semiconductor technological development. / 10000-01-01
29

Vibrational and mechanical properties of disordered solids

Milkus, Rico January 2018 (has links)
The recent development of a framework called non-affine lattice dynamics made it possible to calculate the elastic moduli of disordered systems directly from their microscopic structure and potential energy landscape at zero temperature. In this thesis different types of disordered systems were studied using this framework. By comparing the shear modulus and vibrational properties of nearest neighbour spring networks based on depleted lattices we were able to show that the dominating quantity of the system’s non-affine reorganisation during shear deformation is the affine force field. Furthermore we found that different implementation of disorder lead to the same behaviour at the isostatic point. Later we studied the effect of long range interaction in such depleted lattices with regard to spatial correlation local elasticity. We found that the implementation of long springs with decaying spring constant reproduced the spatial correlation observed in simulations of Lennard-Jones glasses. Finally we looked at simple freely rotating polymer model chains by extending the framework to angular forces and studied the dependence of the shear modulus and the vibrational density of states (VDOS) and length and bending stiffness of the chains. We found that the effect of chain length on the shear modulus and the vibrational density of states diminishes as it depends on the number of backbone bonds in the system. This number increases fast for short chains as many new backbone bonds are introduced but slows down significantly when the chain length reaches 50 monomers per chain. For the dependence on the bending stiffness we found a rich phenomenology that can be understood by looking at specific motions of the monomers relative the the chain geometry. We were able to trace back the different regimes of the VDOS to the simple model of the triatomic molecule. We also explored the limits of non-affine lattice dynamics when describing systems at temperatures T > 0 and gave an approximate solution for the shear modulus in this case.
30

Transport properties of graphene based van der Waals heterostructures

Yu, Geliang January 2015 (has links)
In the past few years, led by graphene, a large variety of two dimensional (2D) materials have been discovered to exhibit astonishing properties. By assembling 2D materials with different designs, we are able to construct novel artificial van der Waals (vdW) heterostructures to explore new fundamental physics and potential applications for future technology. This thesis describes several novel vdW heterostructures and their fundamental properties. At the beginning, the basic properties of some 2D materials and assembled vdW heterostructures are introduced, together with the fabrication procedure and transport measurement setups. Then the graphene based capacitors on hBN (hexagonal Boron Nitride) substrate are studied, where quantum capacitance measurements are applied to determine the density of states and many body effects. Meanwhile, quantum capacitance measurement is also used to search for alternative substrates to hBN which allow graphene to exhibit micrometer-scale ballistic transport. We found that graphene placed on top of MoS2 and TaS2 show comparable mobilities up to 60,000cm2/Vs. After that, the graphene/hBN superlattices are studied. With a Hall bar structure based on the superlattices, we find that new Dirac minibands appear away from the main Dirac cone with pronounced peaks in the resistivity and are accompanied by reversal of the Hall effects. With the capacitive structure based on the superlattices, quantum capacitance measurement is used to directly probe the density states in the graphene/hBN superlattices, and we observe a clear replica spectrum, the Hofstadter-butterfly fan diagram, together with the suppression of quantum Hall Ferromagnetism. In the final part, we report on the existence of the valley current in the graphene/hBN superlattice structure. The topological current originating from graphene’s two valleys flows in opposite directions due to the broken inversion symmetry in the graphene/hBN superlattice, meaning an open band gap in graphene.

Page generated in 0.0753 seconds