11 |
Design and Calibration of a Network of RGB-D Sensors for Robotic Applications over Large WorkspacesMacknojia, Rizwan January 2013 (has links)
This thesis presents an approach for configuring and calibrating a network of RGB-D sensors used to guide a robotic arm to interact with objects that get rapidly modeled in 3D. The system is based on Microsoft Kinect sensors for 3D data acquisition. The work presented here also details an analysis and experimental study of the Kinect’s depth sensor capabilities and performance. The study comprises examination of the resolution, quantization error, and random distribution of depth data. In addition, the effects of color and reflectance characteristics of an object are also analyzed. The study examines two versions of Kinect sensors, one dedicated to operate with the Xbox 360 video game console and the more recent Microsoft Kinect for Windows version.
The study of the Kinect sensor is extended to the design of a rapid acquisition system dedicated to large workspaces by the linkage of multiple Kinect units to collect 3D data over a large object, such as an automotive vehicle. A customized calibration method for this large workspace is proposed which takes advantage of the rapid 3D measurement technology embedded in the Kinect sensor and provides registration accuracy between local sections of point clouds that is within the range of the depth measurements accuracy permitted by the Kinect technology. The method is developed to calibrate all Kinect units with respect to a reference Kinect. The internal calibration of the sensor in between the color and depth measurements is also performed to optimize the alignment between the modalities. The calibration of the 3D vision system is also extended to formally estimate its configuration with respect to the base of a manipulator robot, therefore allowing for seamless integration between the proposed vision platform and the kinematic control of the robot. The resulting vision-robotic system defines the comprehensive calibration of reference Kinect with the robot. The latter can then be used to interact under visual guidance with large objects, such as vehicles, that are positioned within a significantly enlarged field of view created by the network of RGB-D sensors.
The proposed design and calibration method is validated in a real world scenario where five Kinect sensors operate collaboratively to rapidly and accurately reconstruct a 180 degrees coverage of the surface shape of various types of vehicles from a set of individual acquisitions performed in a semi-controlled environment, that is an underground parking garage. The vehicle geometrical properties generated from the acquired 3D data are compared with the original dimensions of the vehicle.
|
12 |
Snow depth measurements and predictions : Reducing environmental impact for artificial grass pitches at snowfallForsblom, Findlay, Ulvatne, Lars Petter January 2020 (has links)
Rubber granulates, used at artificial grass pitches, pose a threat to the environment when leaking into the nature. As the granulates leak to the environment through rain water and snow clearances, they can be transported by rivers and later on end up in the marine life. Therefore, reducing the snow clearances to its minimum is of importance. If the snow clearance problem is minimized or even eliminated, this will have a positive impact on the surrounding nature. The object of this project is to propose a method for deciding when to remove snow and automate the information dispersing upon clearing or closing a pitch. This includes finding low powered sensors to measure snow depth, find a machine learning model to predict upcoming snow levels and create an application with a clear and easy-to-use interface to present weather information and disperse information to the responsible persons. Controlled experiments is used to find the models and sensors that are suitable to solve this problem. The sensors are tested on a single snow quality, where ultrasonic and infrared sensors are found suitable. However, fabricated tests for newly fallen snow questioned the possibility of measuring snow depth using the ultrasonic sensor in the general case. Random Forest is presented as the machine learning model that predicts future snow levels with the highest accuracy. From a survey, indications is found that the web application fulfills the intended functionalities, with some improvements suggested.
|
Page generated in 0.0636 seconds