• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 3
  • Tagged with
  • 10
  • 10
  • 10
  • 10
  • 5
  • 5
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

View Rendering for 3DTV

Muddala, Suryanarayana Murthy January 2013 (has links)
Advancements in three dimensional (3D) technologies are rapidly increasing. Three Dimensional Television (3DTV) aims at creating 3D experience for the home user. Moreover, multiview autostereoscopic displays provide a depth impression without the requirement for any special glasses and can be viewed from multiple locations. One of the key issues in the 3DTV processing chain is the content generation from the available input data format video plus depth and multiview video plus depth. This data allows for the possibility of producing virtual views using depth-image-based rendering. Although depth-image-based rendering is an efficient method, it is known for appearance of artifacts such as cracks, corona and empty regions in rendered images. While several approaches have tackled the problem, reducing the artifacts in rendered images is still an active field of research.   Two problems are addressed in this thesis in order to achieve a better 3D video quality in the context of view rendering: firstly, how to improve the quality of rendered views using a direct approach (i.e. without applying specific processing steps for each artifact), and secondly, how to fill the large missing areas in a visually plausible manner using neighbouring details from around the missing regions. This thesis introduces a new depth-image-based rendering and depth-based texture inpainting in order to address these two problems. The first problem is solved by an edge-aided rendering method that relies on the principles of forward warping and one dimensional interpolation. The other problem is addressed by using the depth-included curvature inpainting method that uses appropriate depth level texture details around disocclusions.   The proposed edge-aided rendering method and depth-included curvature inpainting methods are evaluated and compared with the state-of-the-art methods. The results show an increase in the objective quality and the visual gain over reference methods. The quality gain is encouraging as the edge-aided rendering method omits the specific processing steps to remove the rendering artifacts. Moreover, the results show that large disocclusions can be effectively filled using the depth-included curvature inpainting approach. Overall, the proposed approaches improve the content generation for 3DTV and additionally, for free view point television.
2

Digital Watermarking for Depth-Image-Based Rendering 3D Images and Its Application to Quality Evaluation

Chen, Lei 10 October 2018 (has links)
Due to the rapid development of 3D display market, the protection and authentication of the intellectual property rights of 3D multimedia has become an essential concern. As a consequence, the digital watermarking for 3D image and video is attracting considerable attention. The depth-image-based rendering (DIBR) technique has been playing a critical role in 3D contents representation because of its numerous advantages. A good digital watermarking algorithm should be robust to various possible attacks, including geometric distortions and compressions. And di erent from ordinary 2D digital watermarking, there are more speci c requirements for 3D watermarking, especially for DIBR 3D image watermarking. Not only the center view, but also the virtual left and right views can be illegally distributed. Therefore, the embedded watermark information should be accurately extracted from these three views individually for content authentication, even under attacks. In this thesis, we focus on the research of digital watermarking and watermarking based quality evaluation for DIBR 3D images. We first present a 2D image and video watermarking method based on contourlet transform, which is then extended to a robust contourlet-based watermarking algorithm for DIBR 3D images. The watermark is embedded into the center view by quantizing certain contourlet coe cients. The virtual left and right views are synthesized from the watermarked center view and the corresponding depth map. One advantage of our algorithm is its simplicity and practicality. However, the performance on watermark extraction needs to be further improved. As an improvement, a blind watermarking algorithm for DIBR 3D images based on feature regions and ridgelet transform is proposed. The watermarked view has good perceptual quality under both the objective and subjective image quality measures. Compared with other related and state-of-the-art methods, the proposed algorithm shows superiority in terms of watermark extraction and robustness to various attacks. Furthermore, as one of the most promising techniques for quality evaluation, a watermarking based quality evaluation scheme is developed for DIBR 3D images. The qualities of the watermarked center view and the synthesized left and right views under distortions can be estimated by examining the degradation of corresponding extracted watermarks. The simulation results demonstrate that our scheme has good performance of quality evaluation for DIBR 3D images under the attacks.
3

Edge-aided virtual view rendering for multiview video plus depth

Muddala, Suryanarayana Murthy, Sjöström, Mårten, Olsson, Roger, Tourancheau, Sylvain January 2013 (has links)
Depth-Image-Based Rendering (DIBR) of virtual views is a fundamental method in three dimensional 3-D video applications to produce dierent perspectives from texture and depth information, in particular the multi-viewplus-depth (MVD) format. Artifacts are still present in virtual views as a consequence of imperfect rendering using existing DIBR methods. In this paper, we propose an alternative DIBR method for MVD. In the proposed method we introduce an edge pixel and interpolate pixel values in the virtual view using the actual projected coordinates from two adjacent views, by which cracks and disocclusions are automatically lled. In particular, we propose a method to merge pixel information from two adjacent views in the virtual view before the interpolation; we apply a weighted averaging of projected pixels within the range of one pixel in the virtual view. We compared virtual view images rendered by the proposed method to the corresponding view images rendered by state-of-theart methods. Objective metrics demonstrated an advantage of the proposed method for most investigated media contents. Subjective test results showed preference to dierent methods depending on media content, and the test could not demonstrate a signicant dierence between the proposed method and state-of-the-art methods.
4

Implementation of Disparity Estimation Using Stereo Matching

Wang, Ying-Chung 08 August 2011 (has links)
General 3D stereo vision is composed of two major phases. In the first phase, an image and its corresponding depth map are generated using stereo matching. In the second phase, depth-based image rendering (DIBR) is employed to generate images of different view angles. Stereo matching, a computation-intensive operation, generates the depth maps from two images captured at two different view positions. In this thesis, we present hardware designs of three different stereo matching methods: pixel-based, window-based, and dynamic programming (DP)-based. Pixel--based and window-based methods belong to the local optimization stereo matching methods while DP, one of the global optimization methods, consists of three main processing steps: matching cost computation, cost aggregation, and back-tracing. Hardware implementation of DP-based stereo matching usually requires large memory space to store the intermediate results, leading to large area cost. In this thesis, we propose a tile-based DP method by partition the original image into smaller tiles so that the processing of each tile requires smaller memory size.
5

Design of a Depth-Image-Based Rendering (DIBR) 3D Stereo View Synthesis Engine

Chang, Wei-Chun 01 September 2011 (has links)
Depth-Based Image Rendering (DIBR) is a popular method to generate 3D virtual image at different view positions using an image and a depth map. In general, DIBR consists of two major operations: image warping and hole filling. Image warping calculates the disparity from the depth map given some information of viewers and display screen. Hole filling is to calculate the color of pixel locations that do not correspond to any pixels in the original image after image warping. Although there are many different hole filling methods that determine the colors of the blank pixels, some undesirable artifacts are still observed in the synthesized virtual image. In this thesis, we present an approach that examines the geometry information near the region of blank pixels in order to reduce the artifacts near the edges of objects. Experimental results show that the proposed design can generate more natural shape around the edges of objects at the cost of more hardware and computation time.
6

Low-Cost Design of a 3D Stereo Synthesizer Using Depth-Image-Based Rendering

Cheng, Ching-Wen 01 September 2011 (has links)
In this thesis, we proposed a low cost stereoscopic image generation hardware using Depth Image Based Rendering (DIBR) method. Due to the unfavorable artifacts produced by the DIBR algorithm, researchers have developed various algorithms to handle the problem. The most common one is to smooth the depth map before rendering. However, pre-processing of the depth map usually generates other artifacts and even degrades the perception of 3D images. In order to avoid these defects, we present a method by modifying the disparity of edges to make the edges of foreground objects on the synthesized virtual images look more natural. In contrast to the high computational complexity and power consumption in previous designs, we propose a method that fills the holes with the mirrored background pixel values next to the holes. Furthermore, unlike previous DIBR methods that usually consist of two phases, image warping and hole filling, in this thesis we present a new DIBR algorithm that combines the operations of image warping and hole filling in one phase so that the total computation time and power consumption are greatly reduced. Experimental results show that the proposed design can generate more natural virtual images for different view angles with shorter computation latency.
7

Disocclusion Inpainting using Generative Adversarial Networks

Aftab, Nadeem January 2020 (has links)
The old methods used for images inpainting of the Depth Image Based Rendering (DIBR) process are inefficient in producing high-quality virtual views from captured data. From the viewpoint of the original image, the generated data’s structure seems less distorted in the virtual view obtained by translation but when then the virtual view involves rotation, gaps and missing spaces become visible in the DIBR generated data. The typical approaches for filling the disocclusion tend to be slow, inefficient, and inaccurate. In this project, a modern technique Generative Adversarial Network (GAN) is used to fill the disocclusion. GAN consists of two or more neural networks that compete against each other and get trained. This study result shows that GAN can inpaint the disocclusion with a consistency of the structure. Additionally, another method (Filling) is used to enhance the quality of GAN and DIBR images. The statistical evaluation of results shows that GAN and filling method enhance the quality of DIBR images.
8

Novel Image Interpolation Schemes with Applications to Frame Rate Conversion and View Synthesis

Rezaee Kaviani, Hoda January 2018 (has links)
Image interpolation is the process of generating a new image utilizing a set of available images. The available images may be taken with a camera at different times, or with multiple cameras and from different viewpoints. Usually, the interpolation problem in the first scenario is called Frame Rate-Up Conversion (FRUC), and the second one view synthesis. This thesis focuses on image interpolation and addresses both FRUC and view synthesis problems. We propose a novel FRUC method using optical flow motion estimation and a patch-based reconstruction scheme. FRUC interpolates new frames between original frames of a video to increase the number of frames, and increases motion continuity. In our approach first, forward and backward motion vectors are obtained using an optical flow algorithm, and reconstructed versions of the current and previous frames are generated by our patch-based reconstruction scheme. Using the original and reconstructed versions of the current and previous frames, two mismatch masks are obtained. Then two versions of the middle frame are generated using a patch-based scheme, with estimated motion vectors and the current and previous frames. Finally, a middle mask, which identifies the mismatch areas of the two middle frames is reconstructed. Using these three masks, the best candidates for interpolation are selected and fused to obtain the final middle frame. Due to the patch-based nature of our interpolation scheme most of the holes and cracks will be filled. Although there is always a probability of having holes, the size and number of such holes are much smaller than those that would be generated using pixel-based mapping. The rare holes are filled using existing hole-filling algorithms. With fewer and smaller holes, simpler hole-filling algorithms can be applied to the image and the overall complexity of the required post processing decreases. View synthesis is the process of generating a new (virtual) view using available ones. Depending on the amount of available geometric information, view synthesis techniques can be divided into three categories: Image Based Rendering (IBR), Depth Image Based Rendering (DIBR), and Model Based Rendering (MBR). We introduce an adaptive version, patch-based scheme for IBR. This patch-based scheme reduces the size and number of holes during reconstruction. The size of patch is determined in response to edge information for better reconstruction, especially near the boundaries. In the first stage of the algorithm, disparity is obtained using optical flow estimation. Then, a reconstructed version of the left and right views are generated using our adaptive patch-based algorithm. The mismatches between each view and its reconstructed version are obtained in the mismatch detection steps. This stage results in two masks as outputs, which help with the refinement of disparities and the selection of the best patches for final synthesis. Finally, the remaining holes are filled using our simple hole filling scheme and the refined disparities. The adaptive version still benefits from the overlapping effect of the patches for hole reduction. However, compared with our fixed-size version, it results in better reconstruction near the edges, object boundaries, and inside the highly textured areas. We also propose an adaptive patch-based scheme for DIBR. The proposed method avoids unnecessary warping which is a computationally expensive step in DIBR. We divide nearby views into blocks, and only warp the center of each block. To have a better reconstruction near the edges and depth discontinuities, the block size is selected adaptively. In the blending step, an approach is introduced to calculate and refine the blending weights. Many of the existing DIBR schemes warp all pixels of nearby views during interpolation which is unnecessary. We show that using our adaptive patch-based scheme, it is possible to reduce the number of required warping without degrading the overall quality compared with existing schemes. / Thesis / Doctor of Philosophy (PhD)
9

Image Quality Assessment of 3D Synthesized Views / Évaluation de la qualité des images obtenues par synthèse de vues 3D

Tian, Shishun 22 March 2019 (has links)
Depth-Image-Based Rendering (DIBR) est une technologie fondamentale dans plusieurs applications liées à la 3D, telles que la vidéo en mode point de vue libre (FVV), la réalité virtuelle (VR) et la réalité augmentée (AR). Cependant, l'évaluation de la qualité des vues synthétisées par DIBR a également posé de nouveaux problèmes, car ce processus induit de nouveaux types de distorsions, qui sont intrinsèquement différentes des distorsions provoquées par le codage vidéo. Ce travail est destiné à mieux évaluer la qualité des vues synthétisées par DIBR en multimédia immersif. Au chapitre 2, nous proposons deux métriques complètements sans référence (NR). Le principe de la première métrique NR NIQSV consiste à utiliser plusieurs opérations morphologiques d’ouverture et de fermeture pour détecter et mesurer les distorsions, telles que les régions floues et l’effritement. Dans la deuxième métrique NR NIQSV+, nous améliorons NIQSV en ajoutant un détecteur de “black hole” et une détection “stretching”.Au chapitre 3, nous proposons deux métriques de référence complète pour traiter les distorsions géométriques à l'aide d'un masque de désocclusion et d'une méthode de correspondance de blocs multi-résolution. Au chapitre 4, nous présentons une nouvelle base de données d'images synthétisée par DIBR avec ses scores subjectifs associés. Ce travail se concentre sur les distorsions uniquement induites par différentes méthodes de synthèse de DIBR qui déterminent la qualité d’expérience (QoE) de ces applications liées à DIBR. En outre, nous effectuons également une analyse de référence des mesures d'évaluation de la qualité objective de pointe pour les vues synthétisées par DIBR sur cette base de données. Le chapitre 5 conclut les contributions de cette thèse et donne quelques orientations pour les travaux futurs. / Depth-Image-Based Rendering (DIBR) is a fundamental technology in several 3D-related applications, such as Free viewpoint video (FVV), Virtual Reality (VR) and Augmented Reality (AR). However, new challenges have also been brought in assessing the quality of DIBR-synthesized views since this process induces some new types of distortions, which are inherently different from the distortions caused by video coding. This work is dedicated to better evaluate the quality of DIBRsynthesized views in immersive multimedia. In chapter 2, we propose a completely No-reference (NR) metric. The principle of the first NR metrics NIQSV is to use a couple of opening and closing morphological operations to detect and measure the distortions, such as “blurry regions” and “crumbling”. In the second NR metric NIQSV+, we improve NIQSV by adding a “black hole” and a “stretching” detection. In chapter 3, we propose two Fullreference metrics to handle the geometric distortions by using a dis-occlusion mask and a multi-resolution block matching methods.In chapter 4, we present a new DIBR-synthesized image database with its associated subjective scores. This work focuses on the distortions only induced by different DIBR synthesis methods which determine the quality of experience (QoE) of these DIBR related applications. In addition, we also conduct a benchmark of the state-of-the-art objective quality assessment metrics for DIBR-synthesized views on this database. The chapter 5 concludes the contributions of this thesis and gives some directions of future work.
10

Free View Rendering for 3D Video : Edge-Aided Rendering and Depth-Based Image Inpainting

Muddala, Suryanarayana Murthy January 2015 (has links)
Three Dimensional Video (3DV) has become increasingly popular with the success of 3D cinema. Moreover, emerging display technology offers an immersive experience to the viewer without the necessity of any visual aids such as 3D glasses. 3DV applications, Three Dimensional Television (3DTV) and Free Viewpoint Television (FTV) are auspicious technologies for living room environments by providing immersive experience and look around facilities. In order to provide such an experience, these technologies require a number of camera views captured from different viewpoints. However, the capture and transmission of the required number of views is not a feasible solution, and thus view rendering is employed as an efficient solution to produce the necessary number of views. Depth-image-based rendering (DIBR) is a commonly used rendering method. Although DIBR is a simple approach that can produce the desired number of views, inherent artifacts are major issues in the view rendering. Despite much effort to tackle the rendering artifacts over the years, rendered views still contain visible artifacts. This dissertation addresses three problems in order to improve 3DV quality: 1) How to improve the rendered view quality using a direct approach without dealing each artifact specifically. 2) How to handle disocclusions (a.k.a. holes) in the rendered views in a visually plausible manner using inpainting. 3) How to reduce spatial inconsistencies in the rendered view. The first problem is tackled by an edge-aided rendering method that uses a direct approach with one-dimensional interpolation, which is applicable when the virtual camera distance is small. The second problem is addressed by using a depth-based inpainting method in the virtual view, which reconstructs the missing texture with background data at the disocclusions. The third problem is undertaken by a rendering method that firstly inpaint occlusions as a layered depth image (LDI) in the original view, and then renders a spatially consistent virtual view. Objective assessments of proposed methods show improvements over the state-of-the-art rendering methods. Visual inspection shows slight improvements for intermediate views rendered from multiview videos-plus-depth, and the proposed methods outperforms other view rendering methods in the case of rendering from single view video-plus-depth. Results confirm that the proposed methods are capable of reducing rendering artifacts and producing spatially consistent virtual views. In conclusion, the view rendering methods proposed in this dissertation can support the production of high quality virtual views based on a limited number of input views. When used to create a multi-scopic presentation, the outcome of this dissertation can benefit 3DV technologies to improve the immersive experience.

Page generated in 0.1162 seconds