• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

View Rendering for 3DTV

Muddala, Suryanarayana Murthy January 2013 (has links)
Advancements in three dimensional (3D) technologies are rapidly increasing. Three Dimensional Television (3DTV) aims at creating 3D experience for the home user. Moreover, multiview autostereoscopic displays provide a depth impression without the requirement for any special glasses and can be viewed from multiple locations. One of the key issues in the 3DTV processing chain is the content generation from the available input data format video plus depth and multiview video plus depth. This data allows for the possibility of producing virtual views using depth-image-based rendering. Although depth-image-based rendering is an efficient method, it is known for appearance of artifacts such as cracks, corona and empty regions in rendered images. While several approaches have tackled the problem, reducing the artifacts in rendered images is still an active field of research.   Two problems are addressed in this thesis in order to achieve a better 3D video quality in the context of view rendering: firstly, how to improve the quality of rendered views using a direct approach (i.e. without applying specific processing steps for each artifact), and secondly, how to fill the large missing areas in a visually plausible manner using neighbouring details from around the missing regions. This thesis introduces a new depth-image-based rendering and depth-based texture inpainting in order to address these two problems. The first problem is solved by an edge-aided rendering method that relies on the principles of forward warping and one dimensional interpolation. The other problem is addressed by using the depth-included curvature inpainting method that uses appropriate depth level texture details around disocclusions.   The proposed edge-aided rendering method and depth-included curvature inpainting methods are evaluated and compared with the state-of-the-art methods. The results show an increase in the objective quality and the visual gain over reference methods. The quality gain is encouraging as the edge-aided rendering method omits the specific processing steps to remove the rendering artifacts. Moreover, the results show that large disocclusions can be effectively filled using the depth-included curvature inpainting approach. Overall, the proposed approaches improve the content generation for 3DTV and additionally, for free view point television.
2

Free View Rendering for 3D Video : Edge-Aided Rendering and Depth-Based Image Inpainting

Muddala, Suryanarayana Murthy January 2015 (has links)
Three Dimensional Video (3DV) has become increasingly popular with the success of 3D cinema. Moreover, emerging display technology offers an immersive experience to the viewer without the necessity of any visual aids such as 3D glasses. 3DV applications, Three Dimensional Television (3DTV) and Free Viewpoint Television (FTV) are auspicious technologies for living room environments by providing immersive experience and look around facilities. In order to provide such an experience, these technologies require a number of camera views captured from different viewpoints. However, the capture and transmission of the required number of views is not a feasible solution, and thus view rendering is employed as an efficient solution to produce the necessary number of views. Depth-image-based rendering (DIBR) is a commonly used rendering method. Although DIBR is a simple approach that can produce the desired number of views, inherent artifacts are major issues in the view rendering. Despite much effort to tackle the rendering artifacts over the years, rendered views still contain visible artifacts. This dissertation addresses three problems in order to improve 3DV quality: 1) How to improve the rendered view quality using a direct approach without dealing each artifact specifically. 2) How to handle disocclusions (a.k.a. holes) in the rendered views in a visually plausible manner using inpainting. 3) How to reduce spatial inconsistencies in the rendered view. The first problem is tackled by an edge-aided rendering method that uses a direct approach with one-dimensional interpolation, which is applicable when the virtual camera distance is small. The second problem is addressed by using a depth-based inpainting method in the virtual view, which reconstructs the missing texture with background data at the disocclusions. The third problem is undertaken by a rendering method that firstly inpaint occlusions as a layered depth image (LDI) in the original view, and then renders a spatially consistent virtual view. Objective assessments of proposed methods show improvements over the state-of-the-art rendering methods. Visual inspection shows slight improvements for intermediate views rendered from multiview videos-plus-depth, and the proposed methods outperforms other view rendering methods in the case of rendering from single view video-plus-depth. Results confirm that the proposed methods are capable of reducing rendering artifacts and producing spatially consistent virtual views. In conclusion, the view rendering methods proposed in this dissertation can support the production of high quality virtual views based on a limited number of input views. When used to create a multi-scopic presentation, the outcome of this dissertation can benefit 3DV technologies to improve the immersive experience.

Page generated in 0.1961 seconds