• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Sínteses de monômeros derivatizados com 3-aminopiridina contendo complexos polipiridínicos de Ru(II) do tipo cis-[RuCl2(α-diimina)] onde α-diimina: 2,2᾿-bipiridina e 1,10-fenantrolina e 5-Cl-1,10-fenantrolina / Synthesis of monomers derivatized with 3-aminopyridine containing complexes of ruthenium(II) of type cis-[RuCl2(α-diimine)]where α-diimine: 2,2᾿-bipyridine and 1,10-phenantroline and 5-Cl-1,10-phenantroline

Santos, Evania Danieli Andrade 13 March 2009 (has links)
Os monômeros ligantes 3amdpy2oxaNBE (1), 3imdpyoxaNBE (2) e ácido âmico (3) foram sintetizados e caracterizado por analise elementar (CHN), infravermelho e RMN 1H e 13C. A partir do monômero 1 sintetizou-se compostos partindo de complexos do tipo [RuCl2(LL)], onde foi LL=bpy 37 (complexo 4), phen (complexo 6) ou 5-Cl-phen (complexo 7), e foram realizados estudos de fotoquímica e fotofísica. Os complexos 6 e 7 apresentaram uma eficiente fotofísica e não apresentaram fotoquímica, enquanto os complexos semelhante [Ru(bpy)2(3amnpy)2](PF6)2 (5) e [Ru(phen)2(3amnpy)2](PF6)2 (8) que possui a aminopiridina no lugar do monômero 1, apresentaram fotoquímica. Observou-se que as diferenças na rigidez dos ligantes phen e bpy podem causar diferentes propriedades fotoquímicas e fotofísicasem sistemas do tipo cis-[RuCl2(?-diimina)]. Todos os complexos exibiram absorções na região de 350 nm e entre 420 a 500 nm. Sendo que 5 e 8 apresentaram fotoquímica e os complexos 6 e 7 apresentaram fotofisica. Estes foram estudados em diferentes solventes (DMF, CH3CN, CH2Cl2, THF) e em diferentes comprimentos de onda de irradiação (340, 440 e 500 nm). A emissão dos complexos 6 (580 nm) e 7 (582 nm) em acetonitrila é atribuída a uma MLCT (Ru_phen). Sendo observada a independência do _irr, mas existe dependência da emissão quando a temperatura é abaixada. Além disso, suas propriedades fotocatalíticas são demonstradas pela supressão oxidativa através de íons receptores do metilviologenio. Ainda deve-se levar em conta que, o anel quelante do monômero ligante 1 contribui ainda mais para a estabilização destes complexos, ao contrario, 5 e 8 possuem uma fotolabilização . / The monomer ligands 3amdpy2oxaNBE (1), 3imdpyoxaNBE (2) and amic acid (3) were synthesized and characterized by elementar analysis (CHN), infrared and 1H e 13C NMR. Since monomer 1, it was synthesized complexes of type [RuCl2(LL)], where LL=bpy 37 (complex 4), phen (complex 6) or 5-Cl-phen (complexo 7), with which photophysics and photochemical studies were performed. The complexes 6 and 7 presented efficient photophysics and they do not presented photochemistry, while the similar complexes [Ru(bpy)2(3amnpy)2](PF6)2 (5) and [Ru(phen)2(3amnpy)2](PF6)2 (8), which possess the aminopyridine in place of monomer 1, presented photochemistry. It was observed that the difference in the rigidity of the ligands phen and bpy may cause different photochemical and photophysical properties in systems of type cis-[RuCl2(?- diimine)]. All complexes exhibited absorptions in region of 350 nm and between 420 and 500 nm, where 5 and 8 presented photochemistry and the complexes 6 and 7 presented photophysics. They were studied in different solvents (DMF, CH3CN, CH2Cl2, THF) and in different irradiation wavelength (340, 440 e 500 nm). The emission of the complexes 6 (580 nm) and 7 (582 nm) in acetonitrile is attributed to an MLCT (Ru_phen). It was observed independence of _irr, however there is dependence of emission when the temperature is lowered. Furthermore, their photocatalytic properties are demonstrated by oxidative quenching using methylviologen ion. One should consider that the chelating ring of monomer ligand 1 contributes even more to the stabilization of these complexes, unlike, 5 and 8 that possess photolabilization.
2

Analysis of Bacterial Surface Properties using Atomic Force Microscopy

Dorobantu, Loredana Stefania 11 1900 (has links)
The morphology and physicochemical properties of bacterial cells at the molecular level influence their adhesion to surfaces and interfaces. In this study, atomic force microscopy (AFM) was used to explore the morphology of soft, living cells in aqueous buffer, to map bacterial surface heterogeneities, to directly correlate the results in the AFM force distance curves to the macroscopic properties of the microbial surfaces, and to model the experimental AFM force curves using classical Derjaguin-Landau-Verweij-Overbeek (DLVO) theory of colloidal stability. The surfaces of two bacterial species exhibiting different macroscopic surface hydrophobicity, measured as the oil/water contact angle (Ө): Acinetobacter venetianus RAG-1 (Ө =56.4°) and Rhodococcus erythropolis 20SE1c (Ө =152.9°) were probed with chemically functionalized AFM tips, terminated in hydrophobic and hydrophilic groups. All force measurements were obtained in contact mode and made on a location of the bacterium selected from the tapping mode image. AFM imaging revealed morphological details of the microbial-surface ultrastructures with about 20 nm resolution. The heterogeneity in surface morphology was directly correlated with differences in adhesion forces as emphasized by retraction force curves and also with the presence of external structures, either pili or capsules, as confirmed by transmission electron microscopy. The AFM retraction force curves for A. venetianus RAG-1 and R. erythropolis 20S-E1-c showed differences in the interactions of the external structures with hydrophilic and hydrophobic tips. A. venetianus RAG-1 exhibited an asymmetrical pattern with multiple adhesion peaks suggesting the existence of biopolymers with different lengths on its surface. R. erythropolis 20S-E1-c showed long-range attraction forces accompanied by single rupture events indicating a more hydrophobic and smoother surface. The magnitude of the adhesion forces was proportional to the water contact angle on the two bacterial lawns. The experimental force curves between the two microbial cells and functionalized AFM probes presented discrepancies when compared to the classical DLVO theory. Therefore, an extended DLVO model incorporating an acid–base component to account for attractive hydrophobic interactions and repulsive hydration effects was used to assess the additional interactions. Extended DLVO predictions agreed well with AFM experimental data for both A. venetianus RAG-1, whose surface consists of an exopolymeric capsule and pili, and R. erythropolis 20S-E1-c, whose surface is covered by mycolic acids as well as an exopolymeric capsule. The extended model for the bacteria-AFM tip interactions was consistent with the effects of acid base and steric forces, in addition to classical DLVO theory. / Chemical Engineering
3

Analysis of Bacterial Surface Properties using Atomic Force Microscopy

Dorobantu, Loredana Stefania Unknown Date
No description available.
4

Sínteses de monômeros derivatizados com 3-aminopiridina contendo complexos polipiridínicos de Ru(II) do tipo cis-[RuCl2(α-diimina)] onde α-diimina: 2,2᾿-bipiridina e 1,10-fenantrolina e 5-Cl-1,10-fenantrolina / Synthesis of monomers derivatized with 3-aminopyridine containing complexes of ruthenium(II) of type cis-[RuCl2(α-diimine)]where α-diimine: 2,2᾿-bipyridine and 1,10-phenantroline and 5-Cl-1,10-phenantroline

Evania Danieli Andrade Santos 13 March 2009 (has links)
Os monômeros ligantes 3amdpy2oxaNBE (1), 3imdpyoxaNBE (2) e ácido âmico (3) foram sintetizados e caracterizado por analise elementar (CHN), infravermelho e RMN 1H e 13C. A partir do monômero 1 sintetizou-se compostos partindo de complexos do tipo [RuCl2(LL)], onde foi LL=bpy 37 (complexo 4), phen (complexo 6) ou 5-Cl-phen (complexo 7), e foram realizados estudos de fotoquímica e fotofísica. Os complexos 6 e 7 apresentaram uma eficiente fotofísica e não apresentaram fotoquímica, enquanto os complexos semelhante [Ru(bpy)2(3amnpy)2](PF6)2 (5) e [Ru(phen)2(3amnpy)2](PF6)2 (8) que possui a aminopiridina no lugar do monômero 1, apresentaram fotoquímica. Observou-se que as diferenças na rigidez dos ligantes phen e bpy podem causar diferentes propriedades fotoquímicas e fotofísicasem sistemas do tipo cis-[RuCl2(?-diimina)]. Todos os complexos exibiram absorções na região de 350 nm e entre 420 a 500 nm. Sendo que 5 e 8 apresentaram fotoquímica e os complexos 6 e 7 apresentaram fotofisica. Estes foram estudados em diferentes solventes (DMF, CH3CN, CH2Cl2, THF) e em diferentes comprimentos de onda de irradiação (340, 440 e 500 nm). A emissão dos complexos 6 (580 nm) e 7 (582 nm) em acetonitrila é atribuída a uma MLCT (Ru_phen). Sendo observada a independência do _irr, mas existe dependência da emissão quando a temperatura é abaixada. Além disso, suas propriedades fotocatalíticas são demonstradas pela supressão oxidativa através de íons receptores do metilviologenio. Ainda deve-se levar em conta que, o anel quelante do monômero ligante 1 contribui ainda mais para a estabilização destes complexos, ao contrario, 5 e 8 possuem uma fotolabilização . / The monomer ligands 3amdpy2oxaNBE (1), 3imdpyoxaNBE (2) and amic acid (3) were synthesized and characterized by elementar analysis (CHN), infrared and 1H e 13C NMR. Since monomer 1, it was synthesized complexes of type [RuCl2(LL)], where LL=bpy 37 (complex 4), phen (complex 6) or 5-Cl-phen (complexo 7), with which photophysics and photochemical studies were performed. The complexes 6 and 7 presented efficient photophysics and they do not presented photochemistry, while the similar complexes [Ru(bpy)2(3amnpy)2](PF6)2 (5) and [Ru(phen)2(3amnpy)2](PF6)2 (8), which possess the aminopyridine in place of monomer 1, presented photochemistry. It was observed that the difference in the rigidity of the ligands phen and bpy may cause different photochemical and photophysical properties in systems of type cis-[RuCl2(?- diimine)]. All complexes exhibited absorptions in region of 350 nm and between 420 and 500 nm, where 5 and 8 presented photochemistry and the complexes 6 and 7 presented photophysics. They were studied in different solvents (DMF, CH3CN, CH2Cl2, THF) and in different irradiation wavelength (340, 440 e 500 nm). The emission of the complexes 6 (580 nm) and 7 (582 nm) in acetonitrile is attributed to an MLCT (Ru_phen). It was observed independence of _irr, however there is dependence of emission when the temperature is lowered. Furthermore, their photocatalytic properties are demonstrated by oxidative quenching using methylviologen ion. One should consider that the chelating ring of monomer ligand 1 contributes even more to the stabilization of these complexes, unlike, 5 and 8 that possess photolabilization.
5

Synthesis and Enzymatic Studies of Selenium Derivatized Nucleosides, Nucleotides and Nucleic Acids

Caton-Williams, Julianne Marie 14 June 2009 (has links)
Nucleoside 5-triphosphates are the building blocks to synthesis of nucleic acids. Nucleic acids (RNA and DNA) participate in many important biological functions in living systems, including genetic information storage, gene expression, and catalysis. Nucleoside 5- triphosphates have many important therapeutic and diagnostic applications. To understand how these triphosphates are utilized in living systems, numerous synthetic mimics have been prepared and used as active metabolites of certain drugs and molecular probes. Over the years, nucleic acids have been modified at the nucleobase, sugar moiety and phosphate backbone with the aim of understanding their structures and functions. We have site-specifically replaced selected oxygen atoms of nucleosides and nucleotides with selenium atom in order to enzymatically synthesize selenium-derivatized DNAs for obtaining insights into the DNA flexibility, duplex recognition and stability. Although triphosphates have important biological and medicinal significance, they are however, very difficult to synthesize and isolate in high purity and yield. There are many approaches to the synthesis of nucleoside 5-triphosphates, but there is no general strategy that allows simple and direct synthesis of nucleoside triphosphates. To face the challenges, we have developed a new approach in the absence of protecting groups to quickly and efficiently synthesized native deoxynucleoside 5-triphosphates and deoxynucleoside 5-(α- P-seleno)- P-seleno)triphosphates. Syntheses of the triphosphates containing selenium-derivatized nucleobases were also successfully accomplished. After replacing the oxygen atoms at the 4-position of thymidine and uridine, and the 6-position of guanosine, we observed most strikingly, a large bathrochromic shift of over 100 nm, relative to their native counterparts of UV absorbance of 260 nm. Consequently, the synthesized selenium base modified triphosphates are yellow. We also synthesized 2-selenothymidine and 5-methylseleno thymidine 5-triphosphates. We conducted stability study on the colored 4-selenothymidine and used the 5- triphosphate analog (4-SeTTP) as substrate for polymerase recognition. The Klenow polymerase incorporated the 4-SeTTP with efficiency equal to that of the native counterpart. Finally, 4-SeTTP was used to demonstrate UVdamage resistance of selenium-derivatized DNAs and plasmid.

Page generated in 0.0686 seconds