• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 435
  • 186
  • 44
  • 42
  • 22
  • 17
  • 15
  • 14
  • 6
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 978
  • 303
  • 192
  • 191
  • 182
  • 145
  • 109
  • 107
  • 76
  • 68
  • 66
  • 63
  • 56
  • 52
  • 50
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Modulation of arteriolar diameter by endothelium-drived relaxing factor (EDRF) released from its paired venule

Falcone, Jeffrey C. January 1988 (has links)
This document only includes an excerpt of the corresponding thesis or dissertation. To request a digital scan of the full text, please contact the Ruth Lilly Medical Library's Interlibrary Loan Department (rlmlill@iu.edu).
42

Production Of Bulk Ceramic Shapes From Polymer Derived Ceramics

Hill, Arnold 01 January 2008 (has links)
A method has been developed to produce bulk ceramic components from a class of ceramics known as polymer derived ceramics. In the past polymer derived ceramics have been limited to thin film applications or in the fabrication of MEMS devices. The reason being that when the polymer is into a ceramic, large quantities of gas are generated which produce internal pressure that fractures the ceramic components. The method developed here solves that issue by casting into the polymer a 3 dimensional network of polymer fibers in the form of a foam which, during pyrolysis, burns out and leaves a network of open channels that allows decomposition gases to escape thus preventing pressure from building up. The inclusion of the polymer foam allows for the formation of strong plastic like green bodies which can be machined into any shape. The green bodies are then pyrolized into ceramic components. This process allows for the simple and inexpensive fabrication of complex ceramic components that have the potential to replace current components that are made with traditional methods.
43

Advances in the Use of Sol-Gel-Derived Microarrays as an Assay and Detection Platform

Lebert, Julie M. 08 1900 (has links)
The use of sol-gel immobilization in the fabrication of microarrays is a relatively new approach that has shown potential to become a leading methodology in this field. However, there are a limited number of assay systems that have been reported using this method. Furthermore, methods to produce high-density sol-gel-derived microarrays have not been reported. Herein, two novel assays utilizing sol-gel-derived microarrays are presented. In the first case, the solid phase of sol-gel-derived microarrays was employed as a detection platform for monitoring the activity of glycogen synthase kinase 3-β (GSK3β) in solution using a phosphospecific stain. Using this assay format, the ability to detect hyperphosphorylated product over the pre-phosphorylated substrate was demonstrated and a z' value of 0.49 was obtained, indicating amenability to small molecule screening. Secondly, a fluorogenic assay for acetylcholinesterase (AChE) was development that is compatibility with sol-gel derived microarrays and standard imaging instrumentation. A thiol-reactive fluorogenic dye, typically used for detection of thiolated oligonucleotides, was successfully used to monitor AChE activity both in solution and in silica. Further, a functional sol-gel-derived AChE microarray was fabricated and activity on array was detected. We have also reported on the optimization of materials for the fabrication of high-density kinase microarrays using sol-gel immobilization. By employing a directed criteria-based screen, optimal materials were quickly and efficiently identified. Two materials, 1.5SS/1PV A/Glycerol and 0.25DGS, were identified as the optimal materials for fabrication of sol-gel-derived functional microarrays. / Thesis / Master of Science (MSc)
44

Treatment-resistant ophthalmoplegia in myasthenia gravis: Clinical, molecular and functional studies of patient-derived orbital tissues

Europa, Tarin 08 September 2023 (has links) (PDF)
Introduction: Myasthenia gravis (MG) is an immune-mediated disorder affecting the neuromuscular junction. Weakness of the extraocular muscles (EOMs) occurs frequently in MG and typically responds to immune therapies similarly to the non-ocular muscles. Susceptible individuals with the ophthalmoplegic subphenotype of MG (OP-MG), which occurs almost exclusively in acetylcholine receptor positive MG (AChR-MG), may manifest treatmentresistant extraocular muscle weakness despite the use of standard immune therapies. The pathogenetic mechanisms involved in the development of treatment-resistant ophthalmoplegia in MG are still unknown and no effective treatment currently exists. Aim: To investigate the molecular-genetic pathogenesis of the OP-MG subphenotype. Methods: Triangulation of data from clinical observations, review of MG muscle biopsy histopathology, gene expression studies in OP-MG patient-derived orbital muscles (AChR-MG) and bioenergetic studies in highly specialised perimysial ocular fibroblasts of these OP-MG cases was used to identify the underlying pathogenetic mechanisms of OP-MG and to verify previous hypotheses generated by next generation sequencing studies. Results: Myasthenic ophthalmoparesis may persist despite immune therapies in 40% of cases in the first year of immune treatment. Delay to diagnosis of MG and therefore initiation of treatment (>1 year) was an unfavourable prognostic factor for resolution of ophthalmoparesis and suggested that with prolonged weakness, pathological changes may occur at the level of the muscle. Review of the literature documenting histopathology in MG muscle biopsies showed that neurogenic atrophy and features of mitochondrial stress, which may be secondary consequences of functional denervation and reduced contractility, are frequently observed in MG muscle biopsies and the EOMs may be particularly susceptible, demonstrating features of fatty and fibrocellular replacement of myofibres. Gene expression studies performed in the orbital muscles of OP-MG and non-MG control cases supported the hypotheses of previous unbiased genomic studies showing that genes harbouring OP-MG associated gene variants may be involved in a dysregulated network of genes including genes in pathways involved in atrophy signalling, muscle contractility and mitochondrial homeostasis. Several genes were significantly downregulated in the OP-MG orbital muscles compared with controls. MicroRNAs which are biological regulators of gene expression, were hypothesized to be a potential pathogenetic mechanism causing downregulation of these genes in OP-MG orbital muscles and several microRNAs highly expressed in EOMs were associated with the significantly repressed genes in OP-MG orbital muscle using available data in public microRNA databases. Preliminary dynamic bioenergetic assays in perimysial ocular fibroblasts derived from the EOM myotendons of OP-MG and non-MG control cases suggested that regulation of mitochondrial homeostasis may be altered in the context of MG. Conclusion: Gene expression analyses in patient-derived orbital muscles support the hypotheses of previous genomic studies suggesting that pathogenetic mechanisms involving pathways relating to muscle atrophy, contractility and mitochondrial homeostasis may by triggered in the EOMs in the context of MG. Dysregulation of these pathways is likely to impact EOM regeneration in the context of MG-induced complement-mediated attack as well as contractility in this specialized muscle allotype with a high firing rate. These complex aberrant molecular-genetic interactions may contribute to persistent ophthalmoplegia despite adequate immune therapies in OP-MG cases.
45

Moduli spaces of Bridgeland semistable complexes

Xia, Bingyu 29 August 2017 (has links)
No description available.
46

Studies on the Molecular Nature of Keratinocyte-Derived Interleukin-1 / The Molecular Nature of Keratinocyte-Derived Interleukin-1

Arsenault, Tracy 01 1900 (has links)
Interleukin-1 (IL-1), originally defined as a product of activated macrophages, has since been found to be produced by many cell types including keratinocytes. The nature of this IL-1 activity in keratinocytes, originally known as epidermal cell-derived thymocyte activating factor (ETAF) has been the subject of many studies. In the course of this work it was found that the human keratinocyte cell line COLO 16 contains mRNA homologous to human monocyte-derived IL-1B. A 1.2 kbp cDNA was selected with a human IL-B probe from a lgt11 library constructed from COLO 16 mRNA. Sequence analysis revealed that this eDNA was nearly identical to the 3' 1.2 kb of human monocyte IL-1B. In addition, a partial cDNA (F8) was isolated from COLO 16 cells which has a distinct sequence from either IL-1a or B. There is evidence to suggest that the F8 message may be derived from differential splicing of a region of the human genome which also gives rise to the cGMP-gated ion channel in rod photoreceptor cells. The F8 cDNA hybridized on Northern blots of COLO 16 mRNA to a 1.6 kb message of low abundance. Antisera generated against a synthetic peptide based on inferred protein sequence from the cDNA reacted with a 20 and 30 kDa species in both COLO 16 cells and PMA-stimulated normal human keratinocytes. Expression of the partial cDNA in COS-1 cells resulted in activity in the thymocyte co-stimulation and D10.G4.1 T-cell stimulation assays, suggesting that ETAF activity may be due to a combination of IL-1 and F8. / Thesis / Master of Science (MS)
47

Nanostructured Polymer-Derived Ceramic Aerogels for Environmental and Energy Applications

Zambotti, Andrea 01 June 2023 (has links)
As technologies grow towards more demanding and complex applications, energy and environmental sectors carry a relevant fraction of the ecological burden for the next generations to come. Renewable energies, efficient industrial processes and clever management of environmental resources must be taken into serious account to reduce as much as possible our footprint. In this scenario, material science aims at finding solution for the most disparate scientific issues, these including the synthesis of multifunctional and performing materials able to fill the gap with innovative and green technologies. Among others, ceramic materials have shown a growing flexibility towards green and functional applications also thanks to the Polymer-Derived Ceramic route (PDC). This pathway to ceramic materials has the advantage of controlling their composition at the molecular level via chemical reactions, thus permitting to obtain complex ceramic systems with particular functionalities after controlled pyrolysis of preceramic polymers. Besides, Polymer-Derived Ceramic routes can be implemented with many processing solutions, such as the outgrowing fields of 3D printing and ceramic matrix composites. Among these, porous and cellular ceramics can be synthesized via PDC routes as well, laying the foundations for new, cheap and functional sorbents and scaffolds. In such a scenario, ceramic aerogels are ultraporous materials possessing high surface areas, low density and pore size distributions that easily reach few nanometers while maintaining rather high porosities, generally above 90%. Hence, when compared with other porous ceramics, aerogels present outperforming microstructural features that make them intriguing for applications in the energy and environmental fields, and when the PDC route is combined with aerogels processing, the outcome is something new. This thesis deals exactly with these two concepts, in the framework of innovative energy storage and environmental pollution mitigation. As a matter of fact, this work offers novel synthesis pathways for PDC ceramic aerogels belonging to the Si-C-N-O system, where their chemistry and microstructure have been tuned to serve for the abovementioned applications. Particular attention has been devoted to Si-N, Si-C-N, Si-C and Si-O-C aerogels, characterizing their thermal evolution when changing polymeric precursors and synthesis parameters. On this point, perhydropolysilazane (PHPS) and Durazane® 1800 were employed as precursors for silicon nitride and carbonitride aerogels, SPR-036 and polymethylhydrosiloxane (PHMS) as precursors for SiOC, and SMP-10 polycarbosilane as starting point for producing SiC aerogels. Our interest in making of these aerogels lies both on the urge of understanding the principles behind their synthesis steps, how each of them has an impact on the final aerogel chemistry, microstructure and thermal stability, and given this, how processing parameters can be exploited for novel applications of such peculiar materials. Overall, this thesis offers a paper collection of these novel aerogels featuring applications such as thermal and thermochemical energy storage, thermal insulation, electrochemistry and polluted water management, where we demonstrate the versatility and the potential of PDC routes towards the synthesis of ultraporous functional ceramics.
48

Molecular Dynamic Simulation of Polysiloxane

Chaney, Harrison Matthew 10 April 2023 (has links)
Polymer Derived Ceramics are a promising class of Materials that allow for higher levels of tunability and shaping that traditional sintering methods do not allow for. Polysiloxanes are commonly used as a precursor for these types of material because of their highly tunable microstructures by adjusting the side groups on the initial polymer. These Polymers are generally cross linked and pyrolyzed in inert atmospheres to form the final polymer. The microstructures of Polymer Derived Ceramics is complex and hard to observe due to the size of each microstructure region and the proximity in the periodic table that the elements present have. The process of forming phases such as Graphitic Carbon, Amorphous Carbon, Silicon Carbide. Silicon Oxide, and SiliconOxycarbide are not well understood. Simulation provides a route to understanding the phenomenon behind these phase formations. Specifically, Molecular dynamics simulation paired with the Reaxff forcefield provides a framework to simulate the complex processes involved in pyrolysis such as chemical reactions and a combination of thermodynamic and kinetic interactions. This Thesis examines firstly the size effect that a system can have on phase separation and the change in composition. Showing that size plays a major role in how the system develops and limits the occurrence of specific reactions. Secondly, this thesis shows that using polymer precursors with different initial polymer components leads to vastly different microstructures and yield. This provides insights into how the transition from polymer to ceramic takes place on a molecular level. / Master of Science / Ceramics and Polymers are seen all around the world. Polymers are used in many things from grocery bags to high performance panels on airplanes. Polymers are generally cheap to produce and can be molded into a variety of shapes. Ceramics are generally hard materials and are also used in a wide variety of situations from the concrete in buildings to coatings that protect turbine blades. Ceramics tend to be harder to form specific shapes and more costly to machine. Polymer derived polysiloxanes address this problem by being formed in the polymer state and then transformed into a ceramic by being heated in inert atmospheres. The process of the heating is very complex and the effect that different polymers have on the atomic level is not well understood. This thesis works to address this by using simulation to see what cannot be seen through experimentation alone.
49

Actinomycetes and fungi associated with marine invertebrates: a potential source of bioactive compounds

Mahyudin, Nor Ainy January 2008 (has links)
Actinomycetes and fungi were successfully isolated from both New Zealand and Malaysian marine invertebrates and classified as facultatively marine based on their ability to grow on both sea water and non-sea water media. Most of the extracts obtained from selected isolates were cytotoxic. A clear preference of the actinomycetes for solid-state fermentation was observed, however, for fungi no significant preference was seen. Three isolates of Streptomyces spp., four Penicillium spp. and two Paecilomyces spp. whose extracts showed good cytotoxicity were selected for further investigation. A small-scale extract obtained from a solid culture of Streptomyces sp. (LA3L2) showed good cytotoxicity and a new cytotoxic metabolite was isolated from a large-scale extract of Streptomyces sp. (LA3L2). This metabolite was characterized as S-methyl 2,4-dihydroxy-6-isopropyl-3,5-dimethylbenzothioate (5.15) and is only the third compound reported to contain the S-methyl benzothioate group. Two known compounds, montagnetol (5.16) and erythrin (5.18), were isolated from a further large-scale cultivation of Streptomyces sp. (LA3L2) and is the first reported actinomycete to produce these lichen-related compounds. In addition, two known inactive metabolites (bohemamine (5.1) and bohemamine B (5.2)) were identified from the small-scale extract. Streptomyces sp. (LA3L2) was also investigated for the effect of temperature and salinity on growth and cytotoxicity and shown to produce bohemamine only at 20 - 28℃ and 4% sea salt concentration on solid media. This isolate gave a low yield of active metabolite under all conditions. Small-scale extracts of two other Streptomyces spp. yielded three known cytotoxic metabolites. These were thiazostatin B (7.14) from Streptomyces sp. (LA5L4) and chromomycin A2 (7.1), chromomycin A3 (7.2) and chromomycin 02-3D (7.3) from Streptomyces sp. (LA3L1). All four Penicillium spp. produced known metabolites. Penicillium sp. (LY1L5) yielded two known metabolites, cycloaspeptide A (7.4) and α-cyclopiazonic acid (7.5). α-Cyclopiazonic acid (7.5) and three other known metabolites (roquefortine A (7.6), cyclopeptin (7.7) and viridicatin (7.8)) were isolated from Penicillum sp. (KK3T23). Penicillium sp. (KK3T8) produced brefeldin A (7.10), while mycophenolic acid (7.12) and brevianamide A (7.11) were produced by Penicillium sp. (KK4T14b). The effect of salinity on growth and cytotoxicity was investigated for the two Penicillium isolates producing the cytotoxic metabolite, α-cyclopiazonic acid (7.5). Saline conditions were not required for growth but metabolite production differed between the two isolates with respect to salinity. Isolate LY1L5 required saline conditions for α-cyclopiazonic production whereas isolate KK3T23 produced the metabolite under non-saline conditions and in concentrations of sea salt up to 6%. Three known compounds, indole-3-carboxylic acid (7.15), indole-3-carboxylate (7.17) and 5-carboxymellein (7.16) were identified from Paecilomyces sp. (PR5L9). Investigation of a small-scale extract obtained from a solid culture of another Paecilomyces sp. (PR10T2) resulted in the isolation and characterization of a unique structure of a symmetrical cyclic depsipeptide, epi-angolide (NAM 6-1). NAM 6-1 was considered as a new compound based on four homoisomeric configurations (A1, A2, A3 and A4). The value of dereplication procedures with respect to the rapid identification of metabolites and enhancement of in-house metabolite libraries is discussed. Structural elucidation of nine known metabolites (7.1, 7.2, 7.3, 7.5, 7.6, 7.7, 7.8, 7.10 and 7.11) was greatly aided by the in-house dereplication techniques using LC-MS-UV and AntiMarin database. A significant advantage was gained by the use of the CapNMR which enabled NMR characterization of very small quantities of metabolites (<20 µg). Approximately <5 µg of materials were required to perform 1D proton NMR experiments for the dereplication of seven known compounds; bohemamine (5.1), bohemamine B (5.2), thiazostatin B (7.14), indole-3-carboxylate (7.17) and 5-carboxymellein (7.16). Approximately 20 µg of materials were needed to acquire 1D and 2D (HSQC, HMBC and NOE) NMR spectra for structural elucidation of the new metabolite, S-methyl 2,4-dihydroxy-6-isopropyl-3,5-dimethylbenzothioate (5.15). Some 8 µg of materials were sufficient to perform 1D and 2D (COSY, HSQC and HMBC) NMR experiments for complete structural characterization of two known metabolites, montagnetol (5.16) and erythrin (5.18). Approximately 10 µg of materials were needed to acquire 1D and 2D NMR (COSY, HSQC and HMBC) experiments for structural elucidation of the new compound, epi-angolide NAM 6-1 (A1, A2, A3 and A4). Rapid identification of known fungal metabolites enabled the in-house HPLC-UV/Rt library to be enhanced by eight metabolites (7.5, 7.6, 7.7, 7.8, 7.10, 7.11, 7.17 and 7.16). An HPLC-UV/Rt library for actinomycete metabolites was successfully established with the insertion of eight known metabolites (5.1, 5.2, 5.16, 5.18, 7.1, 7.2, 7.3 and 7.14).
50

Studying the molecular consequences of the t(1;11) balanced translocation using iPSCs derived from carriers and within family controls

Makedonopoulou, Paraskevi January 2016 (has links)
Schizophrenia is a major psychiatric disorder that affects 1% of the world population and is among the 10 leading worldwide causes of disability. Disrupted-In- Schizophrenia (DISC1) is one of the most studied risk genes for mental illness and is disrupted by a balanced translocation between chromosomes 1 and 11 that co-segregates with major mental illness in a single large Scottish family. DISC1 is a scaffold protein with numerous interactors and has been shown to hold key roles in neuronal progenitor proliferation, migration, cells signalling and synapse formation and maintenance. The studies herein provide the platform in order to investigate the molecular and cellular consequences of the t(1;11) translocation using induced pluripotent stem cells (iPSCs)-derived neural precursor cells and neurons from within-family carriers and controls. Towards this end, several iPSC lines have been converted into neural progenitor cells (NPCs) and differentiated into physiologically active forebrain neurons following well-characterised protocols. These cells were characterised in terms of basic marker expression at each developmental stage. Inter-line variation was observed in all subsequent experiments but overall t(1;11) lines did not generate less neuronal or less proliferating cells compared to control lines. Furthermore, the expression pattern of genes disrupted by the t(1;11) translocation was investigated by RT-qPCR. DISC1 was reduced by ~50% in the translocation lines, both neural precursors and neurons. This observation corresponds to previous findings in lymphoblastoid cell lines (LBCs) derived from members of the same family. Moreover, DISC1 expression was found to increase as neural precursors differentiation to neurons. Two other genes are disrupted by the t(1;11) translocation;DISC2 and DISC1FP1. Their expression was detectable, but below the threshold of quantification. Similarly, DISC1/DISC1FP1 chimeric transcripts corresponding to such transcripts previously identifies in LBCs from the family were detectable, but not quantifiable. A fourth gene, TSNAX, was also investigated because it is located in close proximity to, and undergoes intergenic splicing with, DISC1. Interestingly, TSNAX was found to be altered in some but not all time points studied, in the translocation carriers compared to control lines. In addition to breakpoint gene expression profiling, iPSC-derived material was used to investigate neuronal differentiation. There seemed to be attenuation in BIII-TUBULIN expression at two weeks post-differentiation, while NESTIN, MAP2 and GFAP expression was similar between translocation carrier and control lines at all time points studied. I also had access to targeted mice designed to mimic the derived chromosome 1 of the t(1;11) balanced translocation. Using RT-qPCR Disc1 expression was found to be 50% lower in heterozygous mice compared to wild types, and I detected a similar profile of chimeric transcript expression as detected in translocation carrier-derived LBCs. These observations support my gene expression studies of the human cells and indicate that the iPSC-derived neural precursors and neurons can be studied in parallel with the genome edited mice to obtain meaningful insights into the mechanism by which the t(1;11) translocation confers substantially elevated risk of major mental illness. In conclusion, the studies described in this thesis provide an experimental platform for investigation of the effects of the t(1;11) translocation upon function and gene and protein expression in material derived from translocation carriers and in brain tissue from a corresponding mouse model.

Page generated in 0.0306 seconds