• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Semistable Graph Homology / Semistable Graph Homology

Zúñiga, Javier 25 September 2017 (has links)
Using the orbicell decomposition of the Deligne-Mumford compactification of the moduli space of Riemann surfaces studied before by the author, a chain complex based on semistable ribbon graphs is constructed which is an extension of the Konsevich’s graph homology. / En este trabajo mediante la descomposicion orbicelular de la compacticacion de Deligne-Mumford del espacio de moduli de supercies de Riemann (estudiada antes por el autor) construimos un complejo basado en grafos de cinta semiestables, lo cual constituye una extension de la homologa de grafos de Kontsevich.
2

Poincaré duality in equivariant intersection theory / Poincaré duality in equivariant intersection theory

Gonzales Vilcarromero, Richard Paul 25 September 2017 (has links)
We study the Poincaré duality map from equivariant Chow cohomology to equivariant Chow groups in the case of torus actions on complete, possibly singular, varieties with isolated fixed points. Our main results yield criteria for the Poincaré duality map to become an isomorphism in this setting. The methods rely on the localization theorem for equivariant Chow cohomology and the notion of algebraic rational cell. We apply our results to complete spherical varieties and their generalizations. / En este artículo estudiamos el homomorfismo de dualidad de Poincaré, el cual relaciona cohomología de Chow equivariante y grupos de Chow equivariante en aquellos casos donde un toro algebraico actúa sobre una variedad singular compacta y con puntos fijos aislados. Nuestros resultados proporcionan criterios bajo los cuales el homomorfismo de dualidadde  Poincaré es un isomorfismo. Para ello, usamos el teorema de localización en cohomología de Chow equivariante y la noción de célula algebraica racional. Aplicamos nuestros resultados a las variedades esféricas compactas y sus generalizaciones.

Page generated in 0.0851 seconds