Spelling suggestions: "subject:"diagnoskod"" "subject:"diagnostikmetoder""
1 |
Unsupervised machine learning to detect patient subgroups in electronic health records / Identifiering av patientgrupper genom oövervakad maskininlärning av digitala patientjournalerLütz, Elin January 2019 (has links)
The use of Electronic Health Records (EHR) for reporting patient data has been widely adopted by healthcare providers. This data can encompass many forms of medical information such as disease symptoms, results from laboratory tests, ICD-10 classes and other information from patients. Structured EHR data is often high-dimensional and contain many missing values, which impose a complication to many computing problems. Detecting meaningful structures in EHR data could provide meaningful insights in diagnose detection and in development of medical decision support systems. In this work, a subset of EHR data from patient questionnaires is explored through two well-known clustering algorithms: K-Means and Agglomerative Hierarchical. The algorithms were tested on different types of data, primarily raw data and data where missing values have been imputed using different imputation techniques. The primary evaluation index for the clustering algorithms was the silhouette value using euclidean and cosine distance measures. The result showed that natural groupings most likely exist in the data set. Hierarchical clustering created higher quality clusters than k-means, and the cosine measure yielded a good interpretation of distance. The data imputation imposed large effects to the data and likewise to the clustering results, and other or more sophisticated techniques are needed for handling missing values in the data set. / Användandet av digitala journaler för att rapportera patientdata har ökat i takt med digitaliseringen av vården. Dessa data kan innehålla många typer av medicinsk information så som sjukdomssymptom, labbresultat, ICD-10 diagnoskoder och annan patientinformation. EHR data är vanligtvis högdimensionell och innehåller saknade värden, vilket kan leda till beräkningssvårigheter i ett digitalt format. Att upptäcka grupperingar i sådana patientdata kan ge värdefulla insikter inom diagnosprediktion och i utveckling av medicinska beslutsstöd. I detta arbete så undersöker vi en delmängd av digital patientdata som innehåller patientsvar på sjukdomsfrågor. Detta dataset undersöks genom att applicera två populära klustringsalgoritmer: k-means och agglomerativ hierarkisk klustring. Algoritmerna är ställda mot varandra och på olika typer av dataset, primärt rådata och två dataset där saknade värden har ersatts genom imputationstekniker. Det primära utvärderingsmåttet för klustringsalgoritmerna var silhuettvärdet tillsammans med beräknandet av ett euklidiskt distansmått och ett cosinusmått. Resultatet visar att naturliga grupperingar med stor sannolikhet finns att hitta i datasetet. Hierarkisk klustring visade på en högre klusterkvalitet än k-means, och cosinusmåttet var att föredra för detta dataset. Imputation av saknade data ledde till stora förändringar på datastrukturen och således på resultatet av klustringsexperimenten, vilket tyder på att andra och mer avancerade dataspecifika imputationstekniker är att föredra.
|
Page generated in 0.0386 seconds