1 |
Diazepam binding inhibitor and tolerance to ethanol in Drosophila melanogasterRobles, Roseanna Beth 15 February 2013 (has links)
Tolerance to ethanol is an endophenotype of alcoholism, allowing the study of a complex psychiatric condition using animal models. To identify new genes involved in the acquisition of tolerance, I designed an automated and high-throughput tolerance assay and screened a collection of deficiency mutants for the inability to develop tolerance. The screen yielded several “regions of interest” where more than one overlapping deficiency failed to develop tolerance. One of these regions comprised nine genes, and testing the expression levels of each gene revealed that diazepam binding inhibitor (Dbi) showed grossly increased expression in the deficiency mutant compared to wild type. Another mutant stock, with a P-element transposon inserted downstream of the Dbi gene, both failed to develop tolerance and showed further increased expression of Dbi. There are two insulator binding sites flanking Dbi, and the P-element transposon also contains insulator binding sites. Based on these results, it was hypothesized that an insulator complex kept Dbi expression low in wild type flies and that disrupting the insulator complex allowed aberrantly high expression of Dbi in the mutants. Furthermore, we assumed that induction of Dbi blocked tolerance by making the mutants resistant prior to the first sedation. A UAS-DBI transgene was constructed to over-express Dbi. Induction of the UAS-DBI with a heat shock gal4 driver induced resistance to ethanol sedation; a similar response was observed in the parental control, but the effect was smaller. Although driving UAS-DBI with the neural elav-gal4 driver did not block tolerance, the experimental stock was resistant to ethanol sedation compared to the parental controls, indicating that increased Dbi expression produced “pre-tolerance.” To confirm the theory that insulator disruption was responsible for the increase in Dbi and the resulting no-tolerance phenotype, the P-element in the second mutant was mobilized by introducing a transposase source. These offspring lines were analyzed using qualitative PCR to determine whether the transposon excised precisely, left a portion of the transposon behind, or removed some of the flanking region. A precise excision mutant was identified, but this mutation did not rescue tolerance as predicted. This result might indicate that genetic background was the cause of the no-tolerance phenotype, or it might indicate that the excision was not exactly precise and removed the native insulator binding site, causing the insulator complex to remain disrupted. / text
|
2 |
Characterization of diazepam binding inhibitor as a structure-function tool for human ɣ-aminobutyric acid-A receptorsSimon-Guth, Szabolcs January 2023 (has links)
Gammaaminosmörsyrareceptorer typ A (GABAAR) är pentameriska ligandstyrda kloridkanaler som uppvisar neurohämmande egenskaper. Därmed är de primära läkemedelsmål för flera ångestdämpande och lugnande läkemedel som används för att minska förekomsten av aktionspotential i neuroner. Trots vikten av dessa receptorer har strukturen av öppen receptor för GABAAR inte lösts hittills, på grund av deras snabba desensibiliseringskinetik. Diazepambindande hämmare (DBI) är en neuropeptid som tidigare rapporterats vara en positiv modulerare för α5β3 GABAAR. I denna studie framställdes DBI genom rekombinant proteinexpression, och den positiva moduleringen undersöktes och karakteriserades med hjälp av voltage-clamp med två elektroder på Xenopus laevis oocyter. För att kunna studera DBI moduleringen skapades GABA dos-responskurvan, och dess karakteristik undersöktes. Baserat på resultaten verkar den positiva moduleringen av DBI vara koncentrationsberoende. Vidare orsakar moduleringen en 2,16-faldig ökning av GABA-framkallad ström vid dess maximala modulationskoncentration. Trots att ström signaler från voltage-clamp uppvisar en viss grad av variabilitet stämmer resultaten överens med tidigare rapporterade observationer som utredde DBI moduleringen respektive GABA dos-responskurvan för α5β3 GABAAR. Dessa resultat kan utnyttjas för att stödja framtida strukturella studier av GABAAR genom att använda denna kunskap om DBI för att potentiellt kunna stabilisera den öppna receptorn, såväl som för att förstå mekanismen för interaktionen mellan DBI och GABAAR. / γ-Aminobutyric acid type-A receptors (GABAARs) are pentameric ligand-gated chloride channels which exhibit neuro inhibitory effects. Hence, they are the primary drug-targets of multiple anxiolytic and sedative drugs used to inhibit the firing rate of neurons. Despite the importance of these receptors, the open structure of GABAAR has not been resolved, owing to their rapid desensitization kinetics. Diazepam binding inhibitor (DBI) is a neuropeptide previously reported to positively modulate the α5β3 GABAARs. In this study, DBI was recombinantly expressed, and this positive modulation was further investigated and characterized by using two-electrode voltage clamp of Xenopus oocytes. For the purpose of studying DBI modulation, GABA dose-response curve was generated, and its characteristics were assessed. Based on the results, the positive modulation of DBI appears to be concentration dependent. Furthermore, the modulation causes a 2.16-fold increase in GABA-elicited current at its maximum modulatory concentration. Although the current traces present some degree of variability, the results are supported by being consistent with previously reported findings investigating DBI modulation and the dose-response curve for α5β3 GABAARs, respectively. These findings can be used to support future structural studies of GABAARs by utilizing this knowledge of DBI to potentially stabilize the open structure of the receptor, as well as in understanding the mechanism of interaction between DBI and GABAARs.
|
Page generated in 0.0973 seconds