• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

C3H6/NOx Interactions Over a Diesel Oxidation Catalyst: Hydrocarbon Oxidation Reaction Pathways

Oh, Harry Hyunsuk January 2012 (has links)
C3H6 oxidation over a Pt/Al2O3 catalyst with or without NOx present was investigated. In particular, its reaction mechanism was studied using diffuse reflectance infrared spectroscopy (DRIFTS), a reactor system designed for monolith-supported catalysts and a micro-reactor system designed for powder catalysts referred to as CATLAB. These experiments reveal that C3H6 oxidation is inhibited by the presence of NO, NO oxidation is inhibited by the presence of CeH6, and that adsorbed NOx can react with gas phase C3H6. DRIFTS and CATLAB results confirm the reaction between C3H6 and nitrates, which are formed during NOx adsorption, with linear nitrites observed as reaction products. Therefore, a reaction route is proposed for C3H6 oxidation in the presence of NOx, namely, nitrates acting as oxidants. Using NO2 instead of NO, or using a high NOx/C3H6 ratio, which is beneficial for nitrate formation, favors this reaction pathway. Data also showed that Pt is required for this reaction, which suggests the nitrates in proximity to the Pt particles are affected/relevant. Reaction kinetics studies of C3H6 oxidation over Pt/Al2O3 and Pt/SiO2 catalysts were performed in CATLAB using a temperature-programmed oxidation method with different oxidants: O2, NO2 and nitrates. The reaction kinetics of these possible reactions were compared in order to determine which reaction is more important. NOx adsorption does not occur on the SiO2 surface so the reaction between C3H6 and NO2 could be isolated and the effect of nitrates could be observed as well when compared to the results from Pt/Al2O3. The Pt dispersions were determined using H2 chemisorption and were 1.3 and 1.6% for Pt/Al2O3 and Pt/SiO2, respectively. C3H6 oxidation starts at a lower temperature with O2 than with NO2 but the activation energy was lower with NO2. This gives indication that hydrocarbons must be activated first for NO2 to be favored in hydrocarbon oxidation. When the experiment was done with C3H6 and nitrates, the reaction did not occur until NOx started to desorb from the catalyst at higher temperatures, when nitrates become unstable and decompose. Therefore, O2 was added to the system and the reaction began at even lower temperature than with just C3H6 and O2. This proved that hydrocarbons need to be activated in order for surface nitrates to affect C3H6 oxidation and this reaction also resulted in a lower activation energy than with just C3H6 and O2. Nitrate consumption was also observed as less NOx desorbed from the catalyst at the later stage of the temperature ramp compared to the amount desorbed when the catalyst was not exposed to C3H6.
2

C3H6/NOx Interactions Over a Diesel Oxidation Catalyst: Hydrocarbon Oxidation Reaction Pathways

Oh, Harry Hyunsuk January 2012 (has links)
C3H6 oxidation over a Pt/Al2O3 catalyst with or without NOx present was investigated. In particular, its reaction mechanism was studied using diffuse reflectance infrared spectroscopy (DRIFTS), a reactor system designed for monolith-supported catalysts and a micro-reactor system designed for powder catalysts referred to as CATLAB. These experiments reveal that C3H6 oxidation is inhibited by the presence of NO, NO oxidation is inhibited by the presence of CeH6, and that adsorbed NOx can react with gas phase C3H6. DRIFTS and CATLAB results confirm the reaction between C3H6 and nitrates, which are formed during NOx adsorption, with linear nitrites observed as reaction products. Therefore, a reaction route is proposed for C3H6 oxidation in the presence of NOx, namely, nitrates acting as oxidants. Using NO2 instead of NO, or using a high NOx/C3H6 ratio, which is beneficial for nitrate formation, favors this reaction pathway. Data also showed that Pt is required for this reaction, which suggests the nitrates in proximity to the Pt particles are affected/relevant. Reaction kinetics studies of C3H6 oxidation over Pt/Al2O3 and Pt/SiO2 catalysts were performed in CATLAB using a temperature-programmed oxidation method with different oxidants: O2, NO2 and nitrates. The reaction kinetics of these possible reactions were compared in order to determine which reaction is more important. NOx adsorption does not occur on the SiO2 surface so the reaction between C3H6 and NO2 could be isolated and the effect of nitrates could be observed as well when compared to the results from Pt/Al2O3. The Pt dispersions were determined using H2 chemisorption and were 1.3 and 1.6% for Pt/Al2O3 and Pt/SiO2, respectively. C3H6 oxidation starts at a lower temperature with O2 than with NO2 but the activation energy was lower with NO2. This gives indication that hydrocarbons must be activated first for NO2 to be favored in hydrocarbon oxidation. When the experiment was done with C3H6 and nitrates, the reaction did not occur until NOx started to desorb from the catalyst at higher temperatures, when nitrates become unstable and decompose. Therefore, O2 was added to the system and the reaction began at even lower temperature than with just C3H6 and O2. This proved that hydrocarbons need to be activated in order for surface nitrates to affect C3H6 oxidation and this reaction also resulted in a lower activation energy than with just C3H6 and O2. Nitrate consumption was also observed as less NOx desorbed from the catalyst at the later stage of the temperature ramp compared to the amount desorbed when the catalyst was not exposed to C3H6.
3

Deactivation of oxidation catalysts by sulphur and phosphorus in diesel and gas driven vehicles

Kärkkäinen, M.-L. (Marja-Liisa) 28 November 2017 (has links)
Abstract The combustion of fuels in motor vehicles is one of the most significant causes of air emissions. The use of oxidation catalysts in exhaust gas emission treatment can reduce hydrocarbons (HCs) and carbon monoxide (CO) emissions by more than 90%. Fuels and engine lubricants contain impurities like sulphur (S) and phosphorus (P), which can have a significant effect on the activity and durability of oxidation catalysts. This thesis aims at increasing the current knowledge of the deactivation phenomena caused by sulphur and phosphorus in diesel and natural/bio gas oxidation catalysts. Accelerated laboratory scale sulphur, phosphorus and thermal treatments in gas-phase conditions were carried out for alumina (Al2O3) based platinum (Pt) and platinum-palladium (PtPd) metallic monolith diesel and natural gas oxidation catalysts. In addition, a vehicle-aged natural gas oxidation catalyst and an engine-bench-aged diesel oxidation catalyst were studied and used as a reference for the laboratory-scale-aged catalysts. BET-BJH, FESEM, TEM, XPS and DRIFT were used as characterization techniques to determine changes on the catalysts. The effect of accelerated deactivation treatments on the catalyst activity was determined using laboratory scale measurements in CO, HC and nitric oxide (NO) oxidation. Sulphur and phosphorus were found to cause morphological and chemical changes on the studied catalysts. Sulphur was found to be adsorbed vertically throughout the entire catalyst support from the catalyst surface to the metallic monolith, while phosphorus accumulated on the surface region of the precious metal containing catalysts. Both, sulphur and phosphorus, slightly increased the average size of the precious metal particles size and are adsorbed onto the alumina by chemical bonds. In addition, a partial transformation from PdO to Pd and a change in the shape of the precious metal particles due to phosphorus were detected. Due to the detected structural and chemical changes on the catalysts, sulphur and phosphorus treatments reduced the catalytic activity of the studied diesel and natural-gas-oxidation catalysts. Correspondence between real and simulated ageing was found and thus the used accelerated laboratory scale aging method can be stated to be a good tool to simulate sulphur and phosphorus exposure. / Tiivistelmä Moottoriajoneuvot ovat merkittäviä ilmapäästöjen aiheuttajia. Hapetuskatalyyttejä käyttämällä hiilimonoksidi- ja hiilivetypäästöistä pystytään poistamaan yli 90 %. Polttoaineet ja voiteluaineet sisältävät epäpuhtauksia kuten rikkiä ja fosforia, jotka voivat merkittävästi heikentää hapetuskatalyyttien aktiivisuutta ja kestävyyttä. Väitöskirjan tavoitteena on tuottaa uutta tietoa rikin ja fosforin aiheuttamasta diesel- ja maakaasukatalyyttien deaktivoitumisesta. Metalliseen monoliittiin tuettuja alumiinioksidipohjaisia platina- ja palladiumkatalyytteja ikäytetiin tekemällä niille rikki-, fosfori- ja lämpökäsittelyjä. Maantieikäytettyä maakaasuhapetuskatalyyttiä ja moottoripenkki-ikäytettyä dieselhapetuskatalyyttiä käytettiin laboratorioikäytettyjen katalyyttien referensseinä. Ikäytyskäsittelyjen aiheuttamat muutokset analysoitiin BET-BJH-, FESEM-, TEM-, XPS- ja DRIFT-menetelmillä. Käsittelyjen vaikutus katalyyttien hiilimonoksidin, hiilivetyjen ja typenoksidien hapetusaktiivisuuteen tutkittiin laboratoriomittakaavan aktiivisuuslaitteella. Rikki ja fosfori aiheuttivat rakenteellisia ja kemiallisia muutoksia tutkittuihin katalyytteihin. Rikki adsorboitui koko tukiaineeseen (tukiaineen pinnalta pohjalle), kun taas fosfori adsorboitui vain pinnan alueelle. Sekä rikki että fosfori kasvattivat jalometallipartikkeleiden kokoa sekä muodostivat alumiinioksidin kanssa yhdisteitä. Lisäksi fosforikäsittelyjen havaittiin osittain pelkistävän PdO:n Pd:ksi ja muuttavan jalometallipartikkelien muotoa. Havaitut rikin ja fosforin aiheuttamat rakenteelliset sekä kemialliset muutokset laskivat diesel- ja maakaasukatalyyttien hapetusaktiivisuutta. Laboratorioikäytyksillä havaittiin olevan hyvä korrelaatio todellisissa olosuhteissa tehtyjen ikäytysten kanssa ja tästä syystä työssä käytetyn laboratoriomittakaavan ikäytysmenetelmän voidaan todeta olevan hyvä työkalu simuloimaan rikin ja fosforin aiheuttamaa deaktivoitumista.
4

Impact des biocarburants sur le système d’oxydation catalytique des véhicules diesel / Impact of biofuels on the catalytic oxidation system of diesel vehicles

Anguita, Paola 08 October 2018 (has links)
Les normes plus restrictives visent à réduire les émissions de polluants, en particulier le CO2, favorisant l'usage des biocarburants. Cependant, le biodiesel contient des éléments inorganiques (Na, K, Ca et P) qui réduisent la durabilité des systèmes de post-traitement. Dans ce travail sont évalués les performances des catalyseurs d'oxydation diesel (DOCs, catalyseur de référence PtPd/CeZrO2/La-Al2O3). Les résultats de caractérisation ont montré l’influence de ces impuretés sur les propriétés physico-chimiques et catalytiques. Bien que la structure cristalline du catalyseur de référence ne change pas après l'incorporation des impuretés, la surface spécifique diminue. La capacité redox a diminué lorsque les impuretés Na, K et Ca sont présents du à leur faible électronégativité, ce qui augmente l'interaction avec l'oxygène. Cette interaction semble être responsable de l’augmentation de la vitesse de réaction de C3H6. Les résultats NO-TPD ont montré que la forte basicité ces impuretés entraînait une plus forte adsorption du NO. Par DRIFT il a été aussi montré que l’adsorption des intermédiaires du NO, associée au champ électrostatique créé par ces cations, empêche l'oxydation de NO. L'adsorption de CO a été favorisée, améliorant la conversion du CO. La formation de phosphate de cérium observée pourrait stabiliser l'état d'oxydation de Ce3+ (vérifié par XPS), en diminuant l'oxydation de NO due au blocage des sites catalytiques. Néanmoins, les co-oxydations de CO et de C3H6 ont été améliorées en évitant l'auto-empoisonnement. Après vieillissement hydrothermal, l'effet des impuretés a été masqué par le frittage de Pt/Pd, ce qui diminue les performances catalytiques / The more restrictive regulations to reduce pollutants emissions, especially CO2, promote the use of biofuels. However, biodiesel contains inorganic elements (Na, K, Ca and P) that reduce the durability of the after-treatment catalysts. This work aims to evaluate the performance of Diesel Oxidation Catalysts (DOCs, PtPd/CeZrO2/La-Al2O3 reference catalyst). The characterization results have shown that the above-mentioned impurities affect the physico-chemical, redox, surface and catalytic properties. Although the catalyst crystalline structure of reference catalyst did not change after impurities incorporation, the specific surface area decreased. The redox ability was also decreased when Na, K and Ca impurities are present due to their low electronegativity, which increased the oxygen interaction. This high interaction seems to be responsible of the enhanced C3H6 reaction rate. NO-TPD results evidenced that the high basicity of Na, K and Ca impurities resulted in an increase of NO adsorption strength. Accordingly, DRIFT results showed the presence of NO intermediates adsorption associated to the electrostatic field created by these cations, hindering NO oxidation. CO adsorption was also promoted, enhancing CO reaction rate. The formation of cerium phosphate was also observed, which could stabilize the Ce3+ oxidation state (checked by XPS), decreasing NO oxidation due to the blockage of catalytic sites. Nevertheless, CO and C3H6 co-oxidations were enhanced by avoiding self-poisoning. After catalyst hydrothermal aging, the effect of impurities was masked by the sintering of Pt/Pd active sites, which decreases the DOC catalytic performances

Page generated in 0.1042 seconds