• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 5
  • 5
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Differential privacy and machine learning: Calculating sensitivity with generated data sets / Differential privacy och maskininlärning: Beräkning av sensitivitet med genererade dataset

Lundmark, Magnus, Dahlman, Carl-Johan January 2017 (has links)
Privacy has never been more important to maintain in today’s information society. Companies and organizations collect large amounts of data about their users. This information is considered to be valuable due to its statistical usage that provide insight into certain areas such as medicine, economics, or behavioural patterns among individuals. A technique called differential privacy has been developed to ensure that the privacy of individuals are maintained. This enables the ability to create useful statistics while the privacy of the individual is maintained. However the disadvantage of differential privacy is the magnitude of the randomized noise applied to the data in order to hide the individual. This research examined whether it is possible to improve the usability of the privatized result by using machine learning to generate a data set that the noise can be based on. The purpose of the generated data set is to provide a local representation of the underlying data set that is safe to use when calculating the magnitude of the randomized noise. The results of this research has determined that this approach is currently not a feasible solution, but demonstrates possible ways to base further research in order to improve the usability of differential privacy. The research indicates limiting the noise to a lower bound calculated from the underlying data set might be enough to reach all privacy requirements. Furthermore, the accuracy of the machining learning algorithm and its impact on the usability of the noise, was not fully investigated and could be of interest in future studies. / Aldrig tidigare har integritet varit viktigare att upprätthålla än i dagens informationssamhälle, där företag och organisationer samlar stora mängder data om sina användare. Merparten av denna information är sedd som värdefull och kan användas för att skapa statistik som i sin tur kan ge insikt inom områden som medicin, ekonomi eller beteendemönster bland individer. För att säkerställa att en enskild individs integritet upprätthålls har en teknik som heter differential privacy utvecklats. Denna möjliggör framtagandet av användbar statistik samtidigt som individens integritet upprätthålls. Differential privacy har dock en nackdel, och det är storleken på det randomiserade bruset som används för att dölja individen i en fråga om data. Denna undersökning undersökte huruvida detta brus kunde förbättras genom att använda maskininlärning för att generera ett data set som bruset kunde baseras på. Tanken var att den genererade datasetet skulle kunna ge en lokal representation av det underliggande datasetet som skulle vara säker att använda vid beräkning av det randomiserade brusets storlek. Forskningen visar att detta tillvägagångssätt för närvarande inte stöds av resultaten. Storleken på det beräknade bruset var inte tillräckligt stort och resulterade därmed i en oacceptabel mängd läckt information. Forskningen visar emellertid att genom att begränsa bruset till en lägsta nivå som är beräknad från det lokala datasetet möjligtvis kan räcka för att uppfylla alla sekretesskrav. Ytterligare forskning behövs för att säkerställa att detta ger den nödvändiga nivån av integritet. Vidare undersöktes inte noggrannheten hos maskininlärningsalgoritmen och dess inverkan på brusets användbarhet vilket kan vara en inriktning för vidare studier.
2

Energy-Efficient Private Forecasting on Health Data using SNNs / Energieffektiv privat prognos om hälsodata med hjälp av SNNs

Di Matteo, Davide January 2022 (has links)
Health monitoring devices, such as Fitbit, are gaining popularity both as wellness tools and as a source of information for healthcare decisions. Predicting such wellness goals accurately is critical for the users to make informed lifestyle choices. The core objective of this thesis is to design and implement such a system that takes energy consumption and privacy into account. This research is modelled as a time-series forecasting problem that makes use of Spiking Neural Networks (SNNs) due to their proven energy-saving capabilities. Thanks to their design that closely mimics natural neural networks (such as the brain), SNNs have the potential to significantly outperform classic Artificial Neural Networks in terms of energy consumption and robustness. In order to prove our hypotheses, a previous research by Sonia et al. [1] in the same domain and with the same dataset is used as our starting point, where a private forecasting system using Long short-term memory (LSTM) is designed and implemented. Their study also implements and evaluates a clustering federated learning approach, which fits well the highly distributed data. The results obtained in their research act as a baseline to compare our results in terms of accuracy, training time, model size and estimated energy consumed. Our experiments show that Spiking Neural Networks trades off accuracy (2.19x, 1.19x, 4.13x, 1.16x greater Root Mean Square Error (RMSE) for macronutrients, calories burned, resting heart rate, and active minutes respectively), to grant a smaller model (19% less parameters an 77% lighter in memory) and a 43% faster training. Our model is estimated to consume 3.36μJ per inference, which is much lighter than traditional Artificial Neural Networks (ANNs) [2]. The data recorded by health monitoring devices is vastly distributed in the real-world. Moreover, with such sensitive recorded information, there are many possible implications to consider. For these reasons, we apply the clustering federated learning implementation [1] to our use-case. However, it can be challenging to adopt such techniques since it can be difficult to learn from data sequences that are non-regular. We use a two-step streaming clustering approach to classify customers based on their eating and exercise habits. It has been shown that training different models for each group of users is useful, particularly in terms of training time; however this is strongly dependent on the cluster size. Our experiments conclude that there is a decrease in error and training time if the clusters contain enough data to train the models. Finally, this study addresses the issue of data privacy by using state of-the-art differential privacy. We apply e-differential privacy to both our baseline model (trained on the whole dataset) and our federated learning based approach. With a differential privacy of ∈= 0.1 our experiments report an increase in the measured average error (RMSE) of only 25%. Specifically, +23.13%, 25.71%, +29.87%, 21.57% for macronutrients (grams), calories burned (kCal), resting heart rate (beats per minute (bpm), and minutes (minutes) respectively. / Hälsoövervakningsenheter, som Fitbit, blir allt populärare både som friskvårdsverktyg och som informationskälla för vårdbeslut. Att förutsäga sådana välbefinnandemål korrekt är avgörande för att användarna ska kunna göra välgrundade livsstilsval. Kärnmålet med denna avhandling är att designa och implementera ett sådant system som tar hänsyn till energiförbrukning och integritet. Denna forskning är modellerad som ett tidsserieprognosproblem som använder sig av SNNs på grund av deras bevisade energibesparingsförmåga. Tack vare deras design som nära efterliknar naturliga neurala nätverk (som hjärnan) har SNNs potentialen att avsevärt överträffa klassiska artificiella neurala nätverk när det gäller energiförbrukning och robusthet. För att bevisa våra hypoteser har en tidigare forskning av Sonia et al. [1] i samma domän och med samma dataset används som utgångspunkt, där ett privat prognossystem som använder LSTM designas och implementeras. Deras studie implementerar och utvärderar också en klustringsstrategi för federerad inlärning, som passar väl in på den mycket distribuerade data. Resultaten som erhållits i deras forskning fungerar som en baslinje för att jämföra våra resultat vad gäller noggrannhet, träningstid, modellstorlek och uppskattad energiförbrukning. Våra experiment visar att Spiking Neural Networks byter ut precision (2,19x, 1,19x, 4,13x, 1,16x större RMSE för makronäringsämnen, förbrända kalorier, vilopuls respektive aktiva minuter), för att ge en mindre modell ( 19% mindre parametrar, 77% lättare i minnet) och 43% snabbare träning. Vår modell beräknas förbruka 3, 36μJ, vilket är mycket lättare än traditionella ANNs [2]. Data som registreras av hälsoövervakningsenheter är enormt spridda i den verkliga världen. Dessutom, med sådan känslig registrerad information finns det många möjliga konsekvenser att överväga. Av dessa skäl tillämpar vi klustringsimplementeringen för federerad inlärning [1] på vårt användningsfall. Det kan dock vara utmanande att använda sådana tekniker eftersom det kan vara svårt att lära sig av datasekvenser som är oregelbundna. Vi använder en tvåstegs streaming-klustringsmetod för att klassificera kunder baserat på deras mat- och träningsvanor. Det har visat sig att det är användbart att träna olika modeller för varje grupp av användare, särskilt när det gäller utbildningstid; detta är dock starkt beroende av klustrets storlek. Våra experiment drar slutsatsen att det finns en minskning av fel och träningstid om klustren innehåller tillräckligt med data för att träna modellerna. Slutligen tar denna studie upp frågan om datasekretess genom att använda den senaste differentiell integritet. Vi tillämpar e-differentiell integritet på både vår baslinjemodell (utbildad på hela datasetet) och vår federerade inlärningsbaserade metod. Med en differentiell integritet på ∈= 0.1 rapporterar våra experiment en ökning av det uppmätta medelfelet (RMSE) på endast 25%. Specifikt +23,13%, 25,71%, +29,87%, 21,57% för makronäringsämnen (gram), förbrända kalorier (kCal), vilopuls (bpm och minuter (minuter).
3

Variational AutoEncoders and Differential Privacy : balancing data synthesis and privacy constraints / Variational AutoEncoders och Differential Privacy : balans mellan datasyntes och integritetsbegränsningar

Bremond, Baptiste January 2024 (has links)
This thesis investigates the effectiveness of Tabular Variational Auto Encoders (TVAEs) in generating high-quality synthetic tabular data and assesses their compliance with differential privacy principles. The study shows that while TVAEs are better than VAEs at generating synthetic data that faithfully reproduces the distribution of real data as measured by the Synthetic Data Vault (SDV) metrics, the latter does not guarantee that the synthetic data is up to the task in practical industrial applications. In particular, models trained on TVAE-generated data from the Creditcards dataset are ineffective. The author also explores various optimisation methods on TVAE, such as Gumbel Max Trick, Drop Out (DO) and Batch Normalization, while pointing out that techniques frequently used to improve two-dimensional TVAE, such as Kullback–Leibler Warm-Up and B Disentanglement, are not directly transferable to the one-dimensional context. However, differential privacy to TVAE was not implemented due to time constraints and inconclusive results. The study nevertheless highlights the benefits of stabilising training with the Differential Privacy - Stochastic Gradient Descent (DP-SGD), as with a dropout, and the existence of an optimal equilibrium point between the constraints of differential privacy and the number of training epochs in the model. / Denna avhandling undersöker hur effektiva Tabular Variational AutoEncoders (TVAE) är när det gäller att generera högkvalitativa syntetiska tabelldata och utvärderar deras överensstämmelse med differentierade integritetsprinciper. Studien visar att även om TVAE är bättre än VAE på att generera syntetiska data som troget återger fördelningen av verkliga data mätt med Synthetic Data Vault (SDV), garanterar det senare inte att de syntetiska data är upp till uppgiften i praktiska industriella tillämpningar. I synnerhet är modeller som tränats på TVAE-genererade data från Creditcards-datasetet ineffektiva. Författaren undersöker också olika optimeringsmetoder för TVAE, såsom Gumbel Max Trick, DO och Batch Normalization, samtidigt som han påpekar att tekniker som ofta används för att förbättra tvådimensionell TVAE, såsom Kullback-Leibler Warm-Up och B Disentanglement, inte är direkt överförbara till det endimensionella sammanhanget. På grund av tidsbegränsningar och redan ofullständiga resultat implementerades dock inte differentierad integritet för TVAE. Studien belyser ändå fördelarna med att stabilisera träningen med Differential Privacy - Stochastic Gradient Descent (DP-SGD), som med en drop-out, och förekomsten av en optimal jämviktspunkt mellan begränsningarna för differential privacy och antalet träningsepoker i modellen.
4

Privacy-preserving Synthetic Data Generation for Healthcare Planning / Sekretessbevarande syntetisk generering av data för vårdplanering

Yang, Ruizhi January 2021 (has links)
Recently, a variety of machine learning techniques have been applied to different healthcare sectors, and the results appear to be promising. One such sector is healthcare planning, in which patient data is used to produce statistical models for predicting the load on different units of the healthcare system. This research introduces an attempt to design and implement a privacy-preserving synthetic data generation method adapted explicitly to patients’ health data and for healthcare planning. A Privacy-preserving Conditional Generative Adversarial Network (PPCGAN) is used to generate synthetic data of Healthcare events, where a well-designed noise is added to the gradients in the training process. The concept of differential privacy is used to ensure that adversaries cannot reveal the exact training samples from the trained model. Notably, the goal is to produce digital patients and model their journey through the healthcare system. / Nyligen har en mängd olika maskininlärningstekniker tillämpats på olika hälso- och sjukvårdssektorer, och resultaten verkar lovande. En sådan sektor är vårdplanering, där patientdata används för att ta fram statistiska modeller för att förutsäga belastningen på olika enheter i sjukvården. Denna forskning introducerar ett försök att utforma och implementera en sekretessbevarande syntetisk datagenereringsmetod som uttryckligen anpassas till patienters hälsodata och för vårdplanering. Ett sekretessbevarande villkorligt generativt kontradiktoriskt nätverk (PPCGAN) används för att generera syntetisk data från hälsovårdshändelser, där ett väl utformat brus läggs till gradienterna i träningsprocessen. Begreppet differentiell integritet används för att säkerställa att motståndare inte kan avslöja de exakta träningsproven från den tränade modellen. Målet är särskilt att producera digitala patienter och modellera deras resa genom sjukvården.
5

Towards Scalable Machine Learning with Privacy Protection

Fay, Dominik January 2023 (has links)
The increasing size and complexity of datasets have accelerated the development of machine learning models and exposed the need for more scalable solutions. This thesis explores challenges associated with large-scale machine learning under data privacy constraints. With the growth of machine learning models, traditional privacy methods such as data anonymization are becoming insufficient. Thus, we delve into alternative approaches, such as differential privacy. Our research addresses the following core areas in the context of scalable privacy-preserving machine learning: First, we examine the implications of data dimensionality on privacy for the application of medical image analysis. We extend the classification algorithm Private Aggregation of Teacher Ensembles (PATE) to deal with high-dimensional labels, and demonstrate that dimensionality reduction can be used to improve privacy. Second, we consider the impact of hyperparameter selection on privacy. Here, we propose a novel adaptive technique for hyperparameter selection in differentially gradient-based optimization. Third, we investigate sampling-based solutions to scale differentially private machine learning to dataset with a large number of records. We study the privacy-enhancing properties of importance sampling, highlighting that it can outperform uniform sub-sampling not only in terms of sample efficiency but also in terms of privacy. The three techniques developed in this thesis improve the scalability of machine learning while ensuring robust privacy protection, and aim to offer solutions for the effective and safe application of machine learning in large datasets. / Den ständigt ökande storleken och komplexiteten hos datamängder har accelererat utvecklingen av maskininlärningsmodeller och gjort behovet av mer skalbara lösningar alltmer uppenbart. Den här avhandlingen utforskar tre utmaningar förknippade med storskalig maskininlärning under dataskyddskrav. För stora och komplexa maskininlärningsmodeller blir traditionella metoder för integritet, såsom datananonymisering, otillräckliga. Vi undersöker därför alternativa tillvägagångssätt, såsom differentiell integritet. Vår forskning behandlar följande utmaningar inom skalbar och integitetsmedveten maskininlärning: För det första undersöker vi hur hög data-dimensionalitet påverkar integriteten för medicinsk bildanalys. Vi utvidgar klassificeringsalgoritmen Private Aggregation of Teacher Ensembles (PATE) för att hantera högdimensionella etiketter och visar att dimensionsreducering kan användas för att förbättra integriteten. För det andra studerar vi hur valet av hyperparametrar påverkar integriteten. Här föreslår vi en ny adaptiv teknik för val av hyperparametrar i gradient-baserad optimering med garantier på differentiell integritet. För det tredje granskar vi urvalsbaserade lösningar för att skala differentiellt privat maskininlärning till stora datamängder. Vi studerar de integritetsförstärkande egenskaperna hos importance sampling och visar att det kan överträffa ett likformigt urval av sampel, inte bara när det gäller effektivitet utan även för integritet. De tre teknikerna som utvecklats i denna avhandling förbättrar skalbarheten för integritetsskyddad maskininlärning och syftar till att erbjuda lösningar för effektiv och säker tillämpning av maskininlärning på stora datamängder. / <p>QC 20231101</p>

Page generated in 0.1126 seconds