• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Regelungstheoretische Analyse- und Entwurfsansätze für unteraktuierte mechanische Systeme

Knoll, Carsten 16 February 2017 (has links) (PDF)
Die Arbeit ist der regelungstheoretischen Betrachtung von mechanischen Systemen mit mehr Freiheitsgraden als Stellgrößen gewidmet. Dabei werden Aspekte aus den Teilgebieten Modellbildung, Systemanalyse, Steuerungsentwurf und Reglerentwurf behandelt. Den Ausgangspunkt bilden die aus dem Lagrange-Formalismus resultierenden Bewegungsgleichungen, für welche neben verschiedene partiell linearisierten Zustandsdarstellungen auch eine spezielle Byrnes-Isidori-Normalform eingeführt wird. Im Unterschied zu einer früher vorgeschlagenen ähnliche Normalform existiert diese "Lagrange-Byrnes-Isidori-Normalform" immer. Weiterhin wird die bedeutende Eigenschaft der differentiellen Flachheit im Zusammenhang mit mechanischen Systemen untersucht. Die bestehende Lücke zwischen den bekannten notwendigen und hinreichenden Flachheitsbedingungen bildet die Motivation zur Anpassung der Regelflächenbedingung auf mechanische Systeme in Lagrange-Byrnes-Isidori-Normalform. Parallel dazu wird die Flachheitsanalyse auf Basis des sogenannten Variationssystems betrachtet. Dabei handelt es sich um ein System von 1-Formen, die durch Anwendung der äußeren Ableitung auf die impliziten Systemgleichungen entstehen. Äquivalent dazu können auch die in einer rechteckigen Polynommatrix bezüglich des Zeitableitungsoperators zusammengefassten Koeffizienten der Basisformen untersucht werden. Die Flachheit eines Systems ist nun gerade äquivalent zur Existenz einer unimodularen Vervollständigung dieser Matrix, welche zudem noch eine bestimmte Integrabilitätsbedingung erfüllen muss. Durch Anwendung des Satzes von Frobenius können aus diesen in der bisherigen Formulierung nur schwer überprüfbaren Bedingungen deutlich einfachere hergeleitet werden. Für den Eingrößenfall ergibt sich dadurch eine erheblich Verringerung des Rechenaufwandes im Vergleich zum Referenzansatz. Im Mehrgrößenfall ist die Situation komplizierter: Durch das Fallenlassen der Unimodularitätsforderung und die Ausnutzung der speziellen Struktur mechanischer Systeme erhält man eine neue notwendige Bedingung für Flachheit, welche sich in endlich vielen Schritten auswerten lässt. Allerdings konnte mit dieser die vermutete Nichtflachheit für die untersuchten mechanischen Beispielsysteme nicht nachgewiesen werden. Einen weiteren Untersuchungsgegenstand bildet das Konzept der Konfigurationsflachheit. Für diese Eigenschaft ist gefordert, dass ein flacher Ausgang existieren muss, der nur von den Konfigurationskoordinaten abhängt. Basierend auf theoretischen Überlungen und dem Fehlen von Gegenbeispielen wird die Hypothese aufgestellt, dass für konservative mechanische Systeme Flachheit und Konfigurationsflachheit äquivalent sind. Für lineare mechanische Systeme kann diese Hypothese mit Hilfe der Kronecker-Normalform von Matrizenscharen verifiziert werden. Bezüglich des Entwurfs von Solltrajektorien werden neben der Darstellung bekannter Verfahren für lineare und für flache Systeme zwei weitere Ansätze genauer diskutiert. Der erste basiert auf der numerischen Lösung des aus dem Steuerungsentwurf resultierenden Randwertproblems. Dazu wird ein angepasstes Kollokationsverfahren konstruiert, welches die Elimination von Systemgrößen durch die explizite Berücksichtigung von Integratorketten ermöglicht, die bei partiell linearisierten Systemen stets auftreten. Unter bestimmten Bedingungen bewirkt dies eine erhebliche Reduktion der Rechenzeit. Der zweite Ansatz betrachtet die Überführung zwischen zwei Ruhelagen und beruht auf der Zeitumkehrsymmetrie, die alle konservativen mechanischen Systeme aufweisen. Er besteht aus mehreren Schritten: Zunächst wird für beide Ruhelagen eine Rückführung mit möglichst großem Attraktivitätsgebiet entworfen. Danach wird das System simulativ ausgehend von der Zielruhelage in der Startruhelage stabilisiert. Die so erhaltene Eingangstrajektorie kann dann bezüglich der Zeit invertiert werden, um das System aus der Startruhelage in die Nähe der Zielruhelage zu überführen, wo schließlich der entsprechende Regler aktiviert wird. In praktischen Realisierungen von unteraktuierten Regelungssystemen treten auf Grund von Effekten wie trockener Reibung und Getriebespiel oft Dauerschwingungen mit schwer vorhersagbaren und beeinflussbaren Parametern auf. Als Alternative zur klassischen Stabilisierung einer (theoretischen) Ruhelage wird deshalb eine Rückführung hergeleitet, welche für ein gegebenes lineares System einen stabilen Grenzzyklus mit vorgebbarer Frequenz und Amplitude asymptotisch stabilisiert.
2

Regelungstheoretische Analyse- und Entwurfsansätze für unteraktuierte mechanische Systeme

Knoll, Carsten 02 September 2016 (has links)
Die Arbeit ist der regelungstheoretischen Betrachtung von mechanischen Systemen mit mehr Freiheitsgraden als Stellgrößen gewidmet. Dabei werden Aspekte aus den Teilgebieten Modellbildung, Systemanalyse, Steuerungsentwurf und Reglerentwurf behandelt. Den Ausgangspunkt bilden die aus dem Lagrange-Formalismus resultierenden Bewegungsgleichungen, für welche neben verschiedene partiell linearisierten Zustandsdarstellungen auch eine spezielle Byrnes-Isidori-Normalform eingeführt wird. Im Unterschied zu einer früher vorgeschlagenen ähnliche Normalform existiert diese "Lagrange-Byrnes-Isidori-Normalform" immer. Weiterhin wird die bedeutende Eigenschaft der differentiellen Flachheit im Zusammenhang mit mechanischen Systemen untersucht. Die bestehende Lücke zwischen den bekannten notwendigen und hinreichenden Flachheitsbedingungen bildet die Motivation zur Anpassung der Regelflächenbedingung auf mechanische Systeme in Lagrange-Byrnes-Isidori-Normalform. Parallel dazu wird die Flachheitsanalyse auf Basis des sogenannten Variationssystems betrachtet. Dabei handelt es sich um ein System von 1-Formen, die durch Anwendung der äußeren Ableitung auf die impliziten Systemgleichungen entstehen. Äquivalent dazu können auch die in einer rechteckigen Polynommatrix bezüglich des Zeitableitungsoperators zusammengefassten Koeffizienten der Basisformen untersucht werden. Die Flachheit eines Systems ist nun gerade äquivalent zur Existenz einer unimodularen Vervollständigung dieser Matrix, welche zudem noch eine bestimmte Integrabilitätsbedingung erfüllen muss. Durch Anwendung des Satzes von Frobenius können aus diesen in der bisherigen Formulierung nur schwer überprüfbaren Bedingungen deutlich einfachere hergeleitet werden. Für den Eingrößenfall ergibt sich dadurch eine erheblich Verringerung des Rechenaufwandes im Vergleich zum Referenzansatz. Im Mehrgrößenfall ist die Situation komplizierter: Durch das Fallenlassen der Unimodularitätsforderung und die Ausnutzung der speziellen Struktur mechanischer Systeme erhält man eine neue notwendige Bedingung für Flachheit, welche sich in endlich vielen Schritten auswerten lässt. Allerdings konnte mit dieser die vermutete Nichtflachheit für die untersuchten mechanischen Beispielsysteme nicht nachgewiesen werden. Einen weiteren Untersuchungsgegenstand bildet das Konzept der Konfigurationsflachheit. Für diese Eigenschaft ist gefordert, dass ein flacher Ausgang existieren muss, der nur von den Konfigurationskoordinaten abhängt. Basierend auf theoretischen Überlungen und dem Fehlen von Gegenbeispielen wird die Hypothese aufgestellt, dass für konservative mechanische Systeme Flachheit und Konfigurationsflachheit äquivalent sind. Für lineare mechanische Systeme kann diese Hypothese mit Hilfe der Kronecker-Normalform von Matrizenscharen verifiziert werden. Bezüglich des Entwurfs von Solltrajektorien werden neben der Darstellung bekannter Verfahren für lineare und für flache Systeme zwei weitere Ansätze genauer diskutiert. Der erste basiert auf der numerischen Lösung des aus dem Steuerungsentwurf resultierenden Randwertproblems. Dazu wird ein angepasstes Kollokationsverfahren konstruiert, welches die Elimination von Systemgrößen durch die explizite Berücksichtigung von Integratorketten ermöglicht, die bei partiell linearisierten Systemen stets auftreten. Unter bestimmten Bedingungen bewirkt dies eine erhebliche Reduktion der Rechenzeit. Der zweite Ansatz betrachtet die Überführung zwischen zwei Ruhelagen und beruht auf der Zeitumkehrsymmetrie, die alle konservativen mechanischen Systeme aufweisen. Er besteht aus mehreren Schritten: Zunächst wird für beide Ruhelagen eine Rückführung mit möglichst großem Attraktivitätsgebiet entworfen. Danach wird das System simulativ ausgehend von der Zielruhelage in der Startruhelage stabilisiert. Die so erhaltene Eingangstrajektorie kann dann bezüglich der Zeit invertiert werden, um das System aus der Startruhelage in die Nähe der Zielruhelage zu überführen, wo schließlich der entsprechende Regler aktiviert wird. In praktischen Realisierungen von unteraktuierten Regelungssystemen treten auf Grund von Effekten wie trockener Reibung und Getriebespiel oft Dauerschwingungen mit schwer vorhersagbaren und beeinflussbaren Parametern auf. Als Alternative zur klassischen Stabilisierung einer (theoretischen) Ruhelage wird deshalb eine Rückführung hergeleitet, welche für ein gegebenes lineares System einen stabilen Grenzzyklus mit vorgebbarer Frequenz und Amplitude asymptotisch stabilisiert.
3

Algebraische Flachheitsanalyse nichtlinearer Systeme

Fritzsche, Klemens 25 September 2024 (has links)
Die Arbeit beschäftigt sich mit dem systemtheoretischen Konzept der Flachheit: einer Eigenschaft dynamischer Systeme mit großer Bedeutung beim Bewältigen typischer nichtlinearer Regelungs- und Steuerungsprobleme, welche für Systeme verschiedener mathematischer Klassen definiert werden kann. Obwohl sich zahlreiche praktische Beispiele als flach herausgestellt haben und flachheitsbasierte Methoden erfolgreich angewendet werden konnten, ist der Nachweis der Existenz bzw. Nichtexistenz sogenannter flacher Ausgänge ein nach wie vor offenes Problem. Diese als theoretisch ideale Sensorpositionen interpretierbaren rein virtuellen Größen erlauben (vereinfacht ausgedrückt) eine freie Parametrisierung aller Systemgrößen, woraus eine besonders einfache Systemdarstellung möglich wird. Die Planung von Steuerung und Regelung in dieser Darstellung kann dann mit den wohlvertrauten linearen Methoden durchgeführt werden. Darüber hinaus existiert in der Forschungsliteratur das duale Konzept der flachen Eingänge, welches sich aus der im Entwurfsprozess technischer Systeme aufkommenden Frage nach geeigneten Stelleingriffen motivieren lässt. Die Arbeit widmet sich im ersten Teil einer algebraischen Perspektive auf die Flachheitsanalyse, welche eine vereinheitlichte Untersuchung von nichtlinearen zeitkontinuierlichen und zeitdiskreten Systemen ermöglicht. Hierfür wird das Konzept der verallgemeinerten Jacobi-Matrix betrachtet, welche den Matrizen über dem Ring der nichtkommutativen Ore-Polynome entstammt. Der zugehörige mathematische Formalismus wird in den für die Arbeit wichtigsten Zügen untersucht. Aufbauend auf diesem Formalismus wird argumentiert, dass ein verbreiteter Zugang aus der Literatur zur Bestimmung flacher Ausgänge im Kern auf eine dynamische Fassung des Satzes von der Umkehrabbildung zurückgeführt werden kann. Aus dieser Perspektive resultiert, dass die zu prüfende Bedingung nicht als notwendig eingestuft werden kann, womit einige in der Literatur formulierte Ergebnisse zur Diskussion gestellt werden. Ein Beispiel untermauert dies. Dass aus diesem Zugang jedoch keine freie Parametrisierbarkeit der Systemgrößen und damit Flachheit folgen muss, zeigt ein weiteres Beispiel, womit die zu prüfende Bedingung auch nicht hinreichend ist. Da die letztere Problematik nur in seltenen Fällen auftritt, wird unter dem Ausschluss dieser der verallgemeinerte Satz von der Umkehrabbildung dennoch als eine nützliche Grundlage für die Flachheitsanalyse angesehen. Hierfür wird die verallgemeinerte Jacobi-Matrix eines impliziten Systems derart unimodular vervollständigt, dass im Anschluss eine Integrabilitätsbedingung erfüllt ist. Durch Integration entsprechender 1-Formen erhält man schließlich einen flachen Ausgang. In der Arbeit wird ein verallgemeinerter Algorithmus zur Berechnung einer unimodularen Vervollständigung vorgestellt, der neben den zeitdiskreten und zeitkontinuierlichen Zustandssystemen auch für die Analyse von Deskriptorsystemen genutzt werden kann. Der algebraische Ansatz wird außerdem auf die Berechnung flacher Eingänge übertragen, bei der einerseits die Integrabilitätsbedingung aus strukturellen Gründen immer erfüllt ist, andererseits jedoch eine zusätzliche Unimodularitätsbedingung gelten muss. Diese ist den Untersuchungen des Autors nach jedoch nur in seltenen Spezialfällen nicht erfüllt. Der zweite Teil der Arbeit widmet sich der Anwendung flacher Eingänge, die im Vergleich zu flachen Ausgängen in der Literatur bisher nur wenig Aufmerksamkeit erhalten haben. Zum einen wird ein Verfahren vorgestellt, mit dem der Reglerentwurf für nichtlineare nichtbeobachtbare nichtflache zeitkontinuierliche Zustandssysteme gelingen kann. Das den flachen Eingängen nahestehende Konzept der fiktiven Eingänge wird dabei mit einer Regelungsstrategie auf Basis flacher Eingänge in geeigneter Weise miteinander kombiniert. Zur Realisierung des Reglers wird ein dynamischer Kompensator benötigt, der im Allgemeinen jedoch nur zeitlich diskretisiert angegeben werden kann. Ein Beispiel illustriert dieses Vorgehen. Zum anderen wird der Frage nachgegangen, welche Rolle flache Eingänge im Beobachterentwurf spielen, was aus Dualitätsgründen vermutet werden kann. Für zeitkontinuierliche Zustandssysteme wird zunächst der zeitkontinuierliche Normalformbeobachter herangezogen, dessen Anwendbarkeit bekanntermaßen als restriktiv einzustufen ist. Für nichtintegrierbare Systeme, d.h. Systeme für die ein solcher Beobachter nicht existiert, wird ein Verfahren vorgestellt, bei welchem dem System mit Hilfe eines dynamischen Kompensators die Dynamik eines integrierbaren Systems mit flachem Eingang aufgeprägt wird. Für dieses kann anschließend ein Normalformbeobachter konstruiert werden. Aus den geschätzen Größen des integrierbaren Systems wird mit Hilfe einer Zustandstransformation schließlich eine Rekonstruktion des Zustands des ursprünglichen Systems erreicht. Dieses prinzipielle Vorgehen wird auf die Klasse der zeitdiskreten Zustandssysteme und auf die der zeitkontinuierlichen Systeme mit abgetasteten Messgrößen übertragen. Auch diese Methode wird durch Beispiele veranschaulicht.

Page generated in 0.0728 seconds