Spelling suggestions: "subject:"diffraction""
1 |
Extinction theorem analysis of diffraction anomalies in overcoated-gratings.DeSandre, Lewis Francis. January 1989 (has links)
A rigorous analysis based upon the extinction theorem is presented to study anomalous resonance effects from single- and multilayer-overcoated, low-efficiency diffraction gratings. Anomalously high diffraction efficiency at resonance results from the coupling of the incident beam into guided waves that can be propagated within the composite structure. Both the traditional characteristic matrix technique and a recursive or R-matrix propagation technique are presented. The R-matrix propagation algorithm was found to be stable numerically, and computational results agree favorably with both experimental and other theoretical work. Numerical results are presented in order to investigate the influence of certain parameters (i.e., groove depth and shape and the number of high- and low-index overlayers) on the diffraction efficiency at resonance. In this analysis, a wavelength of 0.6328 μm and grating period of 0.7 μm were chosen so that only a -1 diffracted order other than the specular is reflected from the gratings. Perfect transfer of the grating relief to the film boundaries does not occur in all instances; it depends on the grating and film characteristics together with the conditions during deposition. Investigated in this work is the effect of nonreplication of the grating profile at film interfaces on anomalous diffraction; a transition from trapezoidal profile at the grating substrate to a rounded relief at the top surface of the multilayer structure is assumed. For the cases studied, it was found that nonreplication has the effect of reducing the strength of the resonance outcoupling. Finally, experimental results on anomalous resonance effects for multilayer-coated gratings are presented. Good agreement with computational results was attained.
|
2 |
Photogating Effect and Diffractive Optics in Low-Dimensional StructuresHowe, Leslie 10 September 2024 (has links)
The development of nanostructures is the driving force of many scientific and technological fields. Among these myriad applications, important technologies such as advanced detection and ranging capabilities for infrared wavelengths and enhanced sensing of chemical molecules have been obtained recently, advancing our understanding of the earth's climate and space imaging. This kind of advancement is made possible through the thorough understanding of the performance of these devices which are fabricated from low-dimensional materials such as graphene, as well as the interaction of light with the materials at the microscopic scales, as is included in this dissertation. As such, the techniques of fabrication and theoretical understanding of graphene-field effect transistors (GFETs) as well as multi-level Fresnel zone plates (MLFZPs) are provided in detail.
The photogating effect, understood as the ability of charge carriers to generate photocurrent when excited by an incident photon within a material, is crucial to the device physics of GFETs. We can utilize this property, as well as the resultant band bending of the interfacial band structure created within these transistors, to measure and predict the power of light as it interacts with the optical sensing area of the graphene. This allows for graphene transistors to be effective photodetectors, and we can accurately model the behavior of these detectors at many testing conditions, such as differing ambient temperatures, varying wavelengths, and multiple sensing area sizes. This work elucidates the capabilities and efficacy of these devices as photodetectors within both experimental and simulated conditions.
In addition to photodetectors, GFETs prove to be capable biosensors as well, as graphene modulation due to the interaction of a molecule on its surface has a similar effect on the current of the channel as the photogating effect. When coupling these mechanisms, we find that there is a measurable effect due to the deposition of a photoreactive biomolecule of interest on the surface of the device. In particular, utilizing photoactive yellow protein (PYP), which has an incredibly strong reaction to blue light, allows us record concentration levels of the protein in solution down to the femtomole on the graphene surface of the detector when illuminated with the appropriate wavelength. This ability to measure the amount of PYP present in solution has many exciting implications, both to the understanding of the protein itself, as well as to the capability of the devices in detecting other proteins or biological molecules.
Finally, nanostructures are an important component to diffraction, which allows for the construction of very precise diffractive lenses. This work entails the fabrication and simulation of MLFZPs, which are useful in their ability to tune the wavelength and focal length of the lenses to strict parameters. In addition, it is shown that these devices may be fabricated on thin polyimide films, allowing for flexibility and usefulness in mechanical applications. We have been able to fabricate lenses with features in precise control down to the nanometer in depth, and this results in incredibly precise and powerful optics which align well with simulated values. / Doctor of Philosophy / In the current technological landscape, most advancements are dependent upon the capability of manufacturers to develop devices with very small features, on the nanoscale. These devices are important to the understanding of climate and atmospheric applications, as well as technologies such as lidar and virtual reality. Photodetectors and biosensors leverage the many capabilities of graphene, which is classified as a two-dimensional material, to create an electrical signal in the presence of photons. These detectors are incredibly useful in satellite or flying craft technologies to directly measure the temperature and composition of the Earth's atmosphere. In this dissertation, we simulate the capabilities of these devices and their performance under varying conditions, such as different wavelengths and powers of light. We also study the efficacy of the detectors in measuring protein, specifically photoactive yellow protein, at very low concentrations. In addition, Fresnel zone plates are a type of diffractive lens which use nanostructures to focus incoming light. Creating these lenses in a flexible material allows for creating highly efficient lenses to be deployed in space, as in a satellite. This work investigates the methods required to create such flexible diffractive lenses, as well as their ability to accurately transmit and focus beams of light. A major contributor to the efficiency of the lenses is the precision of the manufacturing process for small sizes of steps on the surface of the lenses. Much work has been done to understand how small particles interact with nanostructures, as well as how to produce these features accurately and effectively.
|
3 |
Fabricação de elementos ópticos difrativos de modulação completa. / Complex modulation diffractive optical elements fabrication.Medeiros, Marina Sparvoli de 07 August 2007 (has links)
Neste projeto foram desenvolvidos elementos ópticos difrativos fabricados em vidro óptico com modulação de fase, elementos fabricados em silício e em Diamond Like Carbon (carbono tipo diamante) com modulação completa de fase e amplitude. O vidro óptico começa a transmitir em 277 nm (ultravioleta) e vai até o infravermelho próximo (2200 nm) da mesma maneira que o Diamond Like Carbon (que começa a transmitir em 330 nm). Já o silício é um material que começa a transmitir no infravermelho próximo (em torno de 980 nm) e vai até o infravermelho médio (16000 nm). Tanto para o Diamond Like Carbon como para o vidro óptico, optou-se por desenvolver dispositivos que operem para um comprimento de onda de 632,8 nm. Já os elementos ópticos difrativos baseados em silício foram fabricados para operar em 2 comprimentos de onda: 1550 nm e 10600 nm. Para os dispositivos fabricados, foram utilizadas etapas de limpeza de substrato, de deposição de filmes, de litografia e de corrosão úmida e por plasma. A etapa de corrosão por plasma foi o principal objeto de estudo do processo de fabricação com o intuito de otmilizá-la. Foram feitos estudos de taxa de corrosão dos materiais com diferentes composições gasosas com a finalidade de se encontrar os parâmetros mais adequados para otimizar a fabricação dos dispositivos. As melhores condições de processo para o vidro corroído com plasma de CF4 são pressão de 100 mTorr e potência de 400 W, para o Diamond Like Carbon corroído com plasma de O2, pressão de 25 mTorr e potência de 50 W e para o silício corroído com plasma de SF6 os parâmetros são pressão de 100 mTorr e potência de 150 W. Análises ópticas dos elementos, fabricados com esses processos foram realizadas. Na análise óptica dos dispositivos de vidro com dois e quatro níveis de modulação de fase ficou evidente que os elementos ópticos apresentaram bom desempenho devido à uniformidade da intensidade da luz projetada nas imagens e da baixa intensidade do ponto de ordem zero, além das imagens estarem bem focadas e definidas. Para os dispositivos fabricados em Diamond Like Carbon foram formadas imagens bem definidas e focadas. Em uma análise óptica da rugosidade RMS dos filmes finos de Diamond Like Carbon através da obtenção da Reflectância Total e da Reflectância Difusa, foi encontrado um valor de 18,8 nm, o qual se encontra bem abaixo do limite de 63 nm, o que faz com que o dispositivo gere uma imagem otimizada. / In this project it has been manufactured diffractive optical elements in three materials, optical glass, Diamond Like Carbon (DLC) and silicon. These elements were applied in phase modulation devices. The extra advantage of silicon and DLC were the amplitude modulation in visible and ultra-violet spectra respectively. The optic glass starts to transmit at the wavelength 277 nm (UV light) and goes till the near infrared in the same way that the Diamond Like Carbon (that starts to transmit in 330 nm). Silicon is a material that starts to transmit in the near infrared (980 nm) and goes till the middle infrared (16000 nm). Both, DLC and optic glass, was opted to developing devices that operate for a 632,8 nm wavelength. Diffractive Optical Elements silicon based had been manufactured to operate in two wavelengths: 1550 nm and 10600 nm. For the manufactured diffractive optical elements, were used process stages of substrate cleanness, films deposition, lithography and hybrid wet and dry plasma etching. The plasma etching stage was the most studied manufacturing process, aiming of optimized it. For this, some studies of materials etching rate with different gases were made with the purpose to find the more adequate parameters of Radio Frequency power and pressure to reduce the process time to obtain the necessary thickness and low surface roughness. The best conditions of plasma etching process were 100 mTorr pressure and Radio Frequency power of 400 W for the glass, 25 mTorr pressure and Radio Frequency power 50 W for the Diamond Like Carbon and the parameters are 100 mTorr pressure and Radio Frequency power 150 W for silicon. Optical analyses of the diffractive optical elements manufactured with these processes had been realized. In the optical analysis of the glass devices with two and four levels of phase modulation was evident that the optic elements had good performance due to uniformity of the projected light intensity in the images and low intensity of the zero order spot, as well the images are focused and defined. For elements manufactured in Diamond Like Carbon, defined and well-focused images had been formed. In an optic analysis of Diamond Like Carbon thin films RMS roughness through the Total Reflectance and the Diffuse Reflectance, was found a value of 18,8 nm roughness, which is below 63 nm limit, what do that the EOD generates an optimized image.
|
4 |
Fabricação de elementos ópticos difrativos de modulação completa. / Complex modulation diffractive optical elements fabrication.Marina Sparvoli de Medeiros 07 August 2007 (has links)
Neste projeto foram desenvolvidos elementos ópticos difrativos fabricados em vidro óptico com modulação de fase, elementos fabricados em silício e em Diamond Like Carbon (carbono tipo diamante) com modulação completa de fase e amplitude. O vidro óptico começa a transmitir em 277 nm (ultravioleta) e vai até o infravermelho próximo (2200 nm) da mesma maneira que o Diamond Like Carbon (que começa a transmitir em 330 nm). Já o silício é um material que começa a transmitir no infravermelho próximo (em torno de 980 nm) e vai até o infravermelho médio (16000 nm). Tanto para o Diamond Like Carbon como para o vidro óptico, optou-se por desenvolver dispositivos que operem para um comprimento de onda de 632,8 nm. Já os elementos ópticos difrativos baseados em silício foram fabricados para operar em 2 comprimentos de onda: 1550 nm e 10600 nm. Para os dispositivos fabricados, foram utilizadas etapas de limpeza de substrato, de deposição de filmes, de litografia e de corrosão úmida e por plasma. A etapa de corrosão por plasma foi o principal objeto de estudo do processo de fabricação com o intuito de otmilizá-la. Foram feitos estudos de taxa de corrosão dos materiais com diferentes composições gasosas com a finalidade de se encontrar os parâmetros mais adequados para otimizar a fabricação dos dispositivos. As melhores condições de processo para o vidro corroído com plasma de CF4 são pressão de 100 mTorr e potência de 400 W, para o Diamond Like Carbon corroído com plasma de O2, pressão de 25 mTorr e potência de 50 W e para o silício corroído com plasma de SF6 os parâmetros são pressão de 100 mTorr e potência de 150 W. Análises ópticas dos elementos, fabricados com esses processos foram realizadas. Na análise óptica dos dispositivos de vidro com dois e quatro níveis de modulação de fase ficou evidente que os elementos ópticos apresentaram bom desempenho devido à uniformidade da intensidade da luz projetada nas imagens e da baixa intensidade do ponto de ordem zero, além das imagens estarem bem focadas e definidas. Para os dispositivos fabricados em Diamond Like Carbon foram formadas imagens bem definidas e focadas. Em uma análise óptica da rugosidade RMS dos filmes finos de Diamond Like Carbon através da obtenção da Reflectância Total e da Reflectância Difusa, foi encontrado um valor de 18,8 nm, o qual se encontra bem abaixo do limite de 63 nm, o que faz com que o dispositivo gere uma imagem otimizada. / In this project it has been manufactured diffractive optical elements in three materials, optical glass, Diamond Like Carbon (DLC) and silicon. These elements were applied in phase modulation devices. The extra advantage of silicon and DLC were the amplitude modulation in visible and ultra-violet spectra respectively. The optic glass starts to transmit at the wavelength 277 nm (UV light) and goes till the near infrared in the same way that the Diamond Like Carbon (that starts to transmit in 330 nm). Silicon is a material that starts to transmit in the near infrared (980 nm) and goes till the middle infrared (16000 nm). Both, DLC and optic glass, was opted to developing devices that operate for a 632,8 nm wavelength. Diffractive Optical Elements silicon based had been manufactured to operate in two wavelengths: 1550 nm and 10600 nm. For the manufactured diffractive optical elements, were used process stages of substrate cleanness, films deposition, lithography and hybrid wet and dry plasma etching. The plasma etching stage was the most studied manufacturing process, aiming of optimized it. For this, some studies of materials etching rate with different gases were made with the purpose to find the more adequate parameters of Radio Frequency power and pressure to reduce the process time to obtain the necessary thickness and low surface roughness. The best conditions of plasma etching process were 100 mTorr pressure and Radio Frequency power of 400 W for the glass, 25 mTorr pressure and Radio Frequency power 50 W for the Diamond Like Carbon and the parameters are 100 mTorr pressure and Radio Frequency power 150 W for silicon. Optical analyses of the diffractive optical elements manufactured with these processes had been realized. In the optical analysis of the glass devices with two and four levels of phase modulation was evident that the optic elements had good performance due to uniformity of the projected light intensity in the images and low intensity of the zero order spot, as well the images are focused and defined. For elements manufactured in Diamond Like Carbon, defined and well-focused images had been formed. In an optic analysis of Diamond Like Carbon thin films RMS roughness through the Total Reflectance and the Diffuse Reflectance, was found a value of 18,8 nm roughness, which is below 63 nm limit, what do that the EOD generates an optimized image.
|
5 |
A study of parton-parton elastic scattering by colour singlet exchangeHayes, Mark Edward January 1997 (has links)
No description available.
|
6 |
A theoretical study of helium diffraction from the O/Cu(100) surfaceRamsay, Jonathan M. January 1997 (has links)
No description available.
|
7 |
Photonic band gaps in waveguide modes of textured, metallic microcavitiesSalt, Martin Guy January 1999 (has links)
No description available.
|
8 |
Design of diffractive optical elements through low-dimensional optimizationPeters, David W. 2001 August 1900 (has links)
The simulation of diffractive optical structures allows for the efficient testing of a large number of structures without having to actually fabricate these devices. Various forms of analysis of these structures have been done through computer programs in the past. However, programs that can actually design a structure to perform a given task are
very limited in scope. Optimization of a structure can be a task that is very processor time intensive, particularly if the optimization space has many dimensions. This thesis describes the creation of a computer program that is able to find an optimal structure while maintaining a low-dimensional search space, thus greatly reducing the processor time required to find the solution. The program can design the optimal structure for a wide variety of planar optical devices that conform to the weakly-guiding approximation with an efficient code that incorporates the low-dimensional search space concept. This
work is the first use of an electromagnetic field solver inside of an optimization loop for the design of an optimized diffractive-optic structure.
|
9 |
Asymptotic methods in design and characterization ofdiffractive axiconsThaning, Anna January 2002 (has links)
<p>This thesis addresses the subject of diffractive axicons inpartially coherent or oblique illumination. Design andcharacterization of the axicons are performed using asymptoticwave optics, employing the stationary-phase method to obtainapproximations of the diffraction integrals.</p><p>A design method for axicons in partially coherentillumination is derived. The method can be applied to anyincident illumination on radially symmetric Schell-model form.It provides analytical solutions for some specific cases, butfor most incident intensity and coherence distributions it canbe solved numerically to yield the desired on-axis intensity.In addition, a method for estimating the width of the focalline is provided. For coherent light, the design method isidentical to the old one based on energy conservation in raybundles. Since the new method is derived entirely from waveoptics, it both clarifies the old method and extends it topartially coherent light.</p><p>Oblique illumination of axicons, frequently encountered inapplications, causes degradation of the focal line. This changeis characterized, and from the asymptotic theory it is foundthat the focal line is described by an asteroid curve. Thewidth of the focal segment in oblique illumination isaccurately predicted, as confirmed by simulations andexperiments. It is also found that at a fixed angle, anelliptical axicon may be used to compensate for the adverseeffects of oblique illumination.</p><p><b>Keywords:</b>axicons, diffractive optics, coherence,asymptotic methods</p>
|
10 |
Studium produkce dijetů ve fotoprodukčních interakcích na HERA / Studium produkce dijetů ve fotoprodukčních interakcích na HERAŽlebčík, Radek January 2012 (has links)
Recent experimental data on dijet cross section in diffractive photoproduction at HERA collider are analyzed with an emphasis on QCD factorization breaking effects. The possible sources of the contradiction in conclusions of H1 and ZEUS collaborations such as different hadronization corrections and different phase space of both analysis are studied.
|
Page generated in 0.0611 seconds