• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 25
  • 7
  • 5
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 47
  • 11
  • 11
  • 7
  • 7
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

An analytical study of subsonic inviscid flow in diffusers and ducts of varying cross section /

Mach, Kervyn Duane January 1971 (has links)
No description available.
12

An experimental investigation of the flow in wide-angle screened diffusers

Lane, D. L. January 1986 (has links)
No description available.
13

Impeller-diffuser interactions in high speed centrifugal compressors

He, Ning January 2001 (has links)
In the current research work, a computational analysis of a high-speed centrifugal compressor stage for turbocharger applications is presented. A detailed investigation about the interactions between backswept impeller and downstream vaneless and vaned diffusers is carried out. ' A unshrouded backswept impeller with splitters was combined with a vaneless diffuser or a number of different designs of vaned diffusers. The CFD solver CFX-TASCow was used. The three-dimensional Reynolds- Averaged Navier-Stokes equations are solved and a pressure correction method is employed to solve the system of equations. A steady simulation and analysis of the interactions between the impeller and the vaneless diffuser is carried out, emphasis is focused on the comparisons of the different interactions at different conditions regarding the flow structures at different radius ratios, effect of rotational speed, mass flow rate and impeller tip clearance. The predicted results were also compared with the available experimental results in terms of radial Velocity, tangential Velocity and flow angle. In general, the predicted results show a reasonable agreement with the experimental data. A steady state simulation and analysis regarding the interaction between the impeller and various vaned diffusers is carried out. For the interface between the rotational impeller outlet and the stationary vaned diffuser inlet, the stage averaging condition is used. A detailed comparison between the predicted and the available experimental data is performed in terms of static pressure rise, total pressure ratio, choking mass flow and efficiency characteristics, and very good agreement is accomplished. In addition, detailed flow distributions are compared, assessed and critically analysed, regarding different number of diffuser vanes, rotational speed, gap between the leading edge of the vaned diffuser and impeller tip, mass flow rate. Emphasis is focused on the steady state study of the effect of the number of diffuser vanes on the stage operating range. Further more, unsteady simulation and analysis regarding the interactions between backswept impeller and downstream vaned diffusers is carried out. In the unsteady simulation, a geometry scaling method is used to modify the diffuser geometry to the nearest integer pitch ratio while keeping the throat area, flow direction and area ratio unchanged in order to deal with the unequal pitch ratio problems which exist in the unsteady simulation. The unsteady investigation was undertaken regarding different number of diffuser vanes, rotational speed, gap between the leading edge of the vaned diffuser and impeller tip, mass flow rate and impeller tip clearance. The detailed interactions at different conditions are compared, assessed and analysed. The studies focus on the analyses of the effect of the different interactions on the stage operating range, peak efficiency, total pressure ratio, level of unsteadiness, flow structures, flow angle or incidence angle, etc. In addition, the' predicted results are compared with available experimental data and a quite good agreement is achieved although the geometry is scaled. On the other hand, a detailed investigation on the differences between the time averaged unsteady simulation results and steady simulation results was performed at different conditions. The comparisons were carried out regarding static pressure, total pressure, speed, flow angle (or incidence angle) and isentropic efficiency. The investigation confirms that unsteady simulation is still quite important, since some of the steady state simulation results are still not similar to the time averaged ones. Designers should take into account the influence of the unsteadiness on the flow fields when they employ the steady state model in the design process.
14

Low Reynolds number water flow characteristics through rectangular micro diffusers/nozzles with a primary focus on major/minor pressure loss, static pressure recovery and flow separation

Hallenbeck, Kyle J. January 2008 (has links)
Thesis (M.S.)--University of Central Florida, 2008. / Adviser: Larry Chew. Includes bibliographical references (p. 146-148).
15

Part I, The effect of screens in a wide angle diffuser of square cross-section; part II, The influence of the proximity of a wall to the test section exit of a wind tunnel

Wharton, Charles Lancaster 08 1900 (has links)
No description available.
16

An experimental investigation of forced mixing of turbulent boundary layer in an annular diffuser /

Shaw, Robert Joseph January 1979 (has links)
No description available.
17

The effect of Reynolds number and geometry on the performance of subsonic rectangular diffusers

許忠滔, Huey, Chung-tow. January 1963 (has links)
published_or_final_version / Mechanical Engineering / Master / Master of Science in Engineering
18

Investigations into the performance of the reverberation chamber of the integrated acoustics laboratory

Famighetti, Tina Marie 19 April 2005 (has links)
This thesis details the performance of the reverberation chamber of the Integrated Acoustics Laboratory (IAL), equipped with experimental lightweight diffusers. Reverberation chambers are generally equipped with dense baffles, called diffusers, which are designed to reflect but not absorb sound, in an effort to create a sound field in the chamber with uniform energy density. Industry standards, such as ASTM C423, ISO 354, and ISO 3741 for sound absorption and sound power testing in reverberation chambers, recommend the use of stationary and rotating diffusers, made of a material with high surface density and low absorption. Instead, lightweight fiberglass diffuser panels were installed in the IAL reverberation chamber because they are safer, less expensive and more flexible; their performance in the IAL chamber was evaluated. Preliminary testing of the IAL instrumentation chain and analysis techniques documented their acceptable performance. Qualification testing per the abovementioned standards proved that the IAL chamber, equipped with stationary lightweight diffusers, was fit for testing sound power but not sound absorption. However, when equipped with a combination of stationary and rotating lightweight diffusers, the chamber qualified for sound absorption tests. Optimization of absorption testing methodology showed that specimen area did not significantly affect the measured sound absorption coefficient unless the specimen was highly absorptive or the area was significantly less than the recommended 6.69 m2. Also, increasing the empty room absorption of the acoustically hard IAL chamber did not improve the reproducibility of absorption measurements. With regard to length of test, absorption tests in the IAL chamber should include the measurement of 225 decays to attain the representative repeatability values of ASTM C423 for frequencies 315 Hz and higher. Comparative absorption testing showed that the chamber reproduced sound absorption results well; when round robin testing was replicated in the chamber, results were not statistically different from other laboratories. However, the reproducibility was worse for highly absorptive specimens. Sound power testing produced highly reproducible results, well within the limits of reproducibility of the standard. It can be concluded that a combination of stationary and rotating lightweight diffusers made the IAL chamber fit for sound absorption and sound power testing.
19

The effect of Reynolds number and geometry on the performance of subsonic rectangular diffusers /

Huey, Chung-tow. January 1963 (has links)
Thesis (M. Sc.)--University of Hong Kong, 1963. / Typewritten.
20

Supersonic flow through cascades, with application to diffusers /

Buhler, Rolf D. Stewart, Homer Joseph. January 1948 (has links)
Thesis (Aeronautical Engineer). / Includes bibliographical references.

Page generated in 0.0368 seconds