• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 2
  • 1
  • 1
  • Tagged with
  • 15
  • 10
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Evaluation of sewage digested sludge conditioning and dewatering through qualitative and quantitative laboratory methodologies towards process monitoring

Oliveira, Ivo Miguel Delgado Bandeira January 2017 (has links)
This thesis reports on investigations that have contributed to an advancement in the applied and fundamental understanding on how the nature, related storage and processing of digested sewage sludge can influence polymer conditioning and dewatering. The work concentrated more specifically on evaluating the impact of thermal hydrolysis as a pre-treatment to anaerobic digestion (AD) of mainly secondary sewage sludges (Advanced AD, AAD plants) in comparison with conventional mesophilic AD (CMAD) on conditioning and dewatering of the digestate, as this knowledge seemed to be lacking for an AAD technology that is increasingly being implemented. An additional contribution to knowledge from this study relates to the evaluation of how polymer conditioning and dewatering of digested sludges could be monitored using rheometric measurements. It was concluded that digested sludge biofloc characteristics (size, shear viscosity and organic matter composition) affected the most the conditioning and dewatering results but these varied depending on the process conditions i.e. AAD versus CMAD and digestate handling conditions. The reduction in particle size and shear viscosity (η[0.1 s-1]) per g Total Solids as well as the increased solubilization of protein, organically bound nitrogen and chemical oxygen demand of the digestates which contributed to the increased conditioning requirements affected also the dewatering rate and the strength of the flocs produced after conditioning. The changes in the digested sludge biofloc characteristics were detected by rheometric measurements which were well correlated with changes in organic matter composition and polymer conditioning requirements (r of 0.9 and 0.8). It was proposed that the variations in η[0.1 s-1] and organic matter content such as soluble protein could be used to predict polymer dose requirements to achieve good filterability (R2 of 0.7; significance F and p < 0.05). Future work is however required in order to consolidate these findings by monitoring conditioning, dewatering and η[0.1 s-1] of the digestate at full scale.
2

Ultrasonic treatment of sewage sludge in order to increase biogas yields

Ek, Anders January 2005 (has links)
<p>Biogas, a mixture of methane and carbon dioxide, is produced in the anaerobic digestion of sewage sludge. After anaerobic digestion, the digested sludge is often allowed to degas for one or two days. This gas is seldom utilised, but if the degassing could be accelerated, utilisation would be easier. Ultrasound can be used as a pretreatment method for waste activated sludge. It has a disintegrating effect on the sludge and causes lysis of bacteria in the sludge. It also speeds up the hydrolysis; the limiting step of anaerobic digestion of waste activated sludge. Ultrasound can be used to degas waterbased liquids. Ultrasonic degassing of sewage sludge has not been examined previously. The present study aims to investigate the effect of ultrasound on waste activated sludge as well as the potential of ultrasound to speed up the degassing of digested sludge. A semi-continuous, lab-scale digestion experiment was performed with four reactors: two receiving untreated sludge and two receiving treated sludge. The effect of the sonicator was 420 W and the treatment time was 6 min, which corresponds to an energy input of 8.4 kWh/m<sup>3</sup>. Total solids (TS) of the waste activated sludge was ~3.5 %. The ultrasonic treatment caused an increase in gas production of 13 %. There was no difference in methane content. The concentration of filterable chemical oxygen demand (fCOD) increased 375 %, or from 2.8 % to 11 % of total COD. In terms of energy loss/gain the increase in gas production resulted in a loss of 2.7 kWh/m<sup>3</sup>, i.e. more energy is needed to treat the sludge than the potential energy of the increased gas production. However, if the sludge is thickened to a TS >5 %, a net energy gain should be reached. The effect of ultrasound on the degassing of digested sludge was examined in three barrels. The degassing was measured with and without circulation as well as with ultrasonic treatment. The digested sludge had a gas emission rate of 115 L/(m<sup>3</sup> day). No direct burst of gas occurred due to ultrasonic treatment. Over two days more gas was emitted from the barrel equipped with ultrasound, probably due to an induced post-digestion. Thus, ultrasonic pretreatment of waste activated sludge increases the biogas yield. It is inconclusive, whether ultrasonic treatment of digested sludge effects the degassing or not.</p>
3

Ultrasonic treatment of sewage sludge in order to increase biogas yields

Ek, Anders January 2005 (has links)
Biogas, a mixture of methane and carbon dioxide, is produced in the anaerobic digestion of sewage sludge. After anaerobic digestion, the digested sludge is often allowed to degas for one or two days. This gas is seldom utilised, but if the degassing could be accelerated, utilisation would be easier. Ultrasound can be used as a pretreatment method for waste activated sludge. It has a disintegrating effect on the sludge and causes lysis of bacteria in the sludge. It also speeds up the hydrolysis; the limiting step of anaerobic digestion of waste activated sludge. Ultrasound can be used to degas waterbased liquids. Ultrasonic degassing of sewage sludge has not been examined previously. The present study aims to investigate the effect of ultrasound on waste activated sludge as well as the potential of ultrasound to speed up the degassing of digested sludge. A semi-continuous, lab-scale digestion experiment was performed with four reactors: two receiving untreated sludge and two receiving treated sludge. The effect of the sonicator was 420 W and the treatment time was 6 min, which corresponds to an energy input of 8.4 kWh/m3. Total solids (TS) of the waste activated sludge was ~3.5 %. The ultrasonic treatment caused an increase in gas production of 13 %. There was no difference in methane content. The concentration of filterable chemical oxygen demand (fCOD) increased 375 %, or from 2.8 % to 11 % of total COD. In terms of energy loss/gain the increase in gas production resulted in a loss of 2.7 kWh/m3, i.e. more energy is needed to treat the sludge than the potential energy of the increased gas production. However, if the sludge is thickened to a TS &gt;5 %, a net energy gain should be reached. The effect of ultrasound on the degassing of digested sludge was examined in three barrels. The degassing was measured with and without circulation as well as with ultrasonic treatment. The digested sludge had a gas emission rate of 115 L/(m3 day). No direct burst of gas occurred due to ultrasonic treatment. Over two days more gas was emitted from the barrel equipped with ultrasound, probably due to an induced post-digestion. Thus, ultrasonic pretreatment of waste activated sludge increases the biogas yield. It is inconclusive, whether ultrasonic treatment of digested sludge effects the degassing or not.
4

Biogas production from organic waste and biomass - fundamentals and current situation / Sản xuất khí sinh học từ sinh khối và rác thải hữu cơ-nguyên lý và hiện trạng.

Dornack, Christina 15 November 2012 (has links) (PDF)
The use of renewable waste for bioenergy production is in discussion because of the concurrence to the food or animal feed. The treatment of organic waste is necessary in order to keep clean the environment. The combination of those proposals, the waste utilization and the production of renewable energy can be combined with several techniques. In Vietnam the energy demand will increase rapidly in the next years, because a lot of people do not have access to electricity. The development of power sources is limited mainly to large central power plants using hydropower and traditional fossil fuels. So in the country there exists a considerable potential for sustainable energy sources like biomass and residues. The biogas potential is large due to the high livestock population. There are more than 30 million animals in farms, mostly pigs, cattle, and water buffalo. There is a high potential for biogas utilization. Biogas production is economic in small and in big plants, so household biogas digesters are one opportunity for production of renewable energy in small villages or cities with a high livestock population. The advantage of anaerobic treatment of organic waste is the work in closed loops. The treatment of organic waste and the utilization of digested sludge from wastewater treatment plants are samples for the circulation of materials after use. The remaining materials can be used in the natural circulation process, because the nutrients such as nitrogen, phosphorous and carbon, and also trace elements remain in the digested matter. In biogas plants a huge variety of substrates can be used. The adaption of biogas technology to the special conditions of the substrates, the increase of the prices for energy, the aim to replace fossil energies with renewable energies will be forced in the next years. / Việc sử dụng chất thải có thể tái tạo được để sản xuất năng lượng sinh học là vấn đề còn đang được thảo luận vì sự cạnh tranh với thức ăn hoặc thức ăn cho động vật. Việc xử lý các chất thải hữu cơ là cần thiết để giữ sạch môi trường. Sự kết hợp của các đề xuất đó, tận dụng các chất thải và sản xuất năng lượng tái tạo có thể có thể được kết hợp với một số kỹ thuật. Ở Việt Nam, nhu cầu năng lượng sẽ tăng lên nhanh chóng trong những năm tiếp theo, bởi vì rất nhiều người vẫn chưa có điện sử dụng. Sự phát triển của các nguồn năng lượng chỉ giới hạn chủ yếu là các nhà máy điện lớn trung tâm sử dụng thủy điện và các nhiên liệu hóa thạch truyền thống. Vì vậy, trong nước tồn tại tiềm năng đáng kể cho các nguồn năng lượng bền vững như sinh khối và những nguồn khác. Tiềm năng khí sinh học lớn do quần thể động vật nuôi rất lớn. Có hơn 30 triệu động vật trong trang trại, chủ yếu là lợn, bò, trâu nước. Tiềm năng sử dụng khí sinh học rất cao. Sản xuất khí sinh học rất có hiệu quả kinh tế trong các nhà máy nhỏ và lớn, do đó, các thiết bị phản ứng tạo khí sinh học ở các hộ gia đình là một cơ hội để sản xuất năng lượng tái tạo trong các thành phố hay làng mạc nhỏ với số lượng lớn các gia súc được chăn nuôi. Ưu điểm của việc xử lý kỵ khí các chất thải hữu cơ là làm việc trong vòng khép kín. Việc xử lý các chất thải hữu cơ và sử dụng bùn phân hủy từ các nhà máy xử lý nước thải là các ví dụ cho việc tuần hoàn các vật chất sau khi sử dụng. Các vật chất còn lại có thể được sử dụng trong quá trình tuần hoàn tự nhiên, vì các chất dinh dưỡng như phốt pho, nitơ và carbon, và cả các nguyên tố vi lượng vẫn tồn tại trong nguyên liệu đã phân hủy. Trong các nhà máy khí sinh học, rất nhiều loại chất nền có thể được sử dụng. Sự cải tiến công nghệ sản xuất khí sinh học theo các điều kiện đặc biệt của các chất nền, sự gia tăng của giá năng lượng, mục đích thay thế nguồn năng lượng hóa thạch bằng năng lượng tái tạo sẽ là bắt buộc trong những năm tới.
5

Characterization of nutrient release and greenhouse gas emission from Chernozemic soils amended with anaerobically digested cattle manure

Chiyoka, Waraidzo 20 April 2011 (has links)
Two laboratory incubation studies and a growth room bioassay of forage barley were conducted to investigate nitrogen (N) and phosphorus (P) mineralization, and nitrous oxide emission from two contrasting agricultural soils amended with anaerobically digested cattle manure (ADM). The ADM is a nutrient-rich co-product from manure-based biogas plants which is applied to cropland at rates used for raw manure since scientific information on nutrient release from ADM is lacking. Application of the separated solids fraction of ADM (SS) reduced nitrous oxide emission but resulted in lower N mineralization compared to raw manure in both soils. Raw manure- and SS- treatments had similar biomass yields and P supply capacities while the application of pelletized SS (PSS) caused net N immobilization, lower P release than manure and SS, and depressed barley yields relative to non-amended (control) soils.
6

Characterization of nutrient release and greenhouse gas emission from Chernozemic soils amended with anaerobically digested cattle manure

Chiyoka, Waraidzo 20 April 2011 (has links)
Two laboratory incubation studies and a growth room bioassay of forage barley were conducted to investigate nitrogen (N) and phosphorus (P) mineralization, and nitrous oxide emission from two contrasting agricultural soils amended with anaerobically digested cattle manure (ADM). The ADM is a nutrient-rich co-product from manure-based biogas plants which is applied to cropland at rates used for raw manure since scientific information on nutrient release from ADM is lacking. Application of the separated solids fraction of ADM (SS) reduced nitrous oxide emission but resulted in lower N mineralization compared to raw manure in both soils. Raw manure- and SS- treatments had similar biomass yields and P supply capacities while the application of pelletized SS (PSS) caused net N immobilization, lower P release than manure and SS, and depressed barley yields relative to non-amended (control) soils.
7

Ammonium Removal from High Strength Wastewater Using a Hybrid Ion Exchange Biological Process

Aponte-Morales, Veronica Ester 20 November 2015 (has links)
Anaerobic digestion (AD) has been shown to be an effective technique for energy recovery and stabilization of livestock wastes, municipal sludges and industrial wastewaters. However, further treatment is required to remove nitrogen from AD effluents to avoid detriments to surface and ground waters. The high free ammonia (FA) concentrations present in AD effluents can inhibit nitrification processes in conventional biological nitrogen removal (BNR) systems. The overall goal of this research was to develop a process for removal of nitrogen from AD swine waste (ADSW) effluent. The proposed solution was to incorporate particulate chabazite, which has a high cation exchange capacity, into a sequencing batch reactor (SBR) to adsorb ammonium and therefore ease nitrification inhibition. The process developed is called a chabazite-SBR. Three research questions were used to guide this research. First question (Chapter 3): How does chabazite pretreatment with groundwater (GW) affect the kinetics and cation exchange capacity during ammonium (NH4+) uptake? Kinetics and isotherm batch tests were performed with GW pretreated chabazite. In addition, sodium chloride (NaCl), and deionized water (DI) pretreated chabazite was included for comparison because these are typically used pretreatment methods. The Ion Exchange (IX) isotherm model was used to calculate the cation exchange capacity and the pseudo-first and film diffusion kinetics models were applied to quantify the effect of the pretreatment on the reaction rate. Results showed that the exchange capacity was slightly higher for GW pretreated chabazite compared with the other common pretreatment strategies; however, the enhancement was not significantly different. The kinetics of NH4+ uptake during the first four hours of contact was significantly improved by GW pretreatment when compared with other common pretreatment strategies. This was caused by an enhancement in film diffusion mechanisms. The findings of this first part of the research were important because it was shown that NaCl pretreatment is not needed to improve the kinetics and cation exchange capacity of chabazite. Second question (Chapter 4): How does addition of chabazite to ADSW centrate affect nitrification rates? Nitrification batch test with varying NH4+ concentrations were performed to identify the inhibitory NH4+ concentration. Additional nitrification batch tests treating real and synthetic waste with initial NH4+ concentration of 1,000 mg-N L-1 with added zeolite were performed. For the mixed liquor tested in this study, NH4+ concentrations must be maintained below 200 mg-N L-1 to relieve nitrification inhibition. Treatment of ADSW centrate requires a chabazite dose of 150 g L-1 to ease FA inhibition of nitrification. The rate of nitrification increased, by approximately a factor of 3, when chabazite was added to a batch reactor treating high NH4+ strength wastewater. However, Na+ release from the chabazite also plays a role in nitrification inhibition. The findings of this part of the research showed the potential for using chabazite for overcoming FA inhibition of nitrification during treatment of high NH4+ strength wastewater. Third question (Chapter 5): How effective is the chabazite-SBR in removing total nitrogen concentrations from ADSW centrate? A chabazite-SBR was operated for 40 weeks (cycles) to study the TN removal efficiency with varying carbon source. The efficiency of IX was also monitored over time. The chabazite-SBR process achieved stable TN removal from ADSW centrate during the 40 weeks of operation. Simultaneous nitrification-denitrification reduced chemical input requirements. Addition of an external organic carbon source at a rate of 3.2 g-COD g-N-1 resulted in maximum TN removal. An overall TN removal efficiency of 84% was achieved, with specific nitrification and denitrification rates of 0.43 and 1.49 mg-N g-VSS-1 hr-1, respectively. The IX stage of the chabazite-SBR was able to reduce FA concentrations to below the inhibitory level for nitrification inhibition over 40 chabazite-SBR cycles with no loss in IX efficiency over time and no fresh zeolite added to the reactor.
8

Experimentální sušárna čistírenských kalů / Experimental solar drier of sewage sludge

Širůček, Vojtěch January 2013 (has links)
The master’s thesis is focused on the issue of solar drying of sewage sludge. The sludge management of wastewater treatment plants is described in the first part of this thesis. This theoretical part also deals with description of drying and dryers used for sludge treatment. The second part of the thesis is focused on the experimental solar drying of sewage sludge and the evaluation of the results.
9

Use of Manganese Compounds and Microbial Fuel Cells in Wastewater Treatment.

Jiang, Junli January 2011 (has links)
Manganese compounds have a high potential for treating wastewater, both for utilizing its oxidation, flocculation ability and catalyst ability in anaerobic nitrification. The promising use of manganese compounds (such as permanganate and manganese dioxide) is regarded as an effective method of treating organic compounds in wastewater from municipal and industrial wastewater. Now it is newly realized possibilities to combine manganese compounds with Microbial Fuel Cell technology. Aiming at reusing the biomass in anaerobic digested sludge for degrading organic pollutants and simultaneously recovering electric energy, Single-chamber Microbial Fuel Cell (SMFC) system was developed and investigated during the main experimental part. Considering the electricity generation rate and characteristics of cathode, MnO2 was used as the reactant on the cathode electrode; meanwhile, the substrate types in anode compartment also were investigated and then extra sodium acetate was added to investigate the power generation performance. Two parts of the research were carried out during the whole project. The chemical treatment part was mainly designed to find out the best dosage of KMnO4 in flocculation when concurrent reacted with magnesium and calcium compounds when treating reject wastewater from digester at Hammarby Sjöstadsverk. The other part was studied to see whether it is possible to improve electricity generation by degrading organic pollutants when MnO2 was used as a cathodic reactant in sediment microbial fuel cell which consisted of anaerobic digested sludge from UASB.
10

Ammonium Removal and Electricity Generation by Using Microbial Desalination Cells.

Wang, Han January 2011 (has links)
Microbial fuel cell (MFC) has become one of the energy-sustainable technologies for wastewater treatment purpose in the recent years. It combines wastewater treatment and electricity generation together so as to achieve energy balance. By inoculating microorganism in the anode chamber and filling catholyte in the cathode chamber, and also with the help of a proton exchange membrane (PEM) between them, the MFC can transfer protons and produce power. Microbial desalination cells (MDC) are based on MFC’s structure and can fulfill desalination function by the addition of a middle chamber and anion exchange membrane (AEM). This study focuses on ammonium removal and electricity generation in MDC system. Mainly two types of liquid were tested, a solution of Hjorthorn Salt and filtrated supernatant. The experiments were performed at Hammarby Sjöstad research station and laboratory of Land and Water Resources department, Stockholm. It consists of a preparation stage, a MFC stage and a MDC stage. Until the end of MFC stage, biofilm in the anode chamber had been formed and matured. After that, solutions of different initial concentrations (1.5, 2.5, 5, 15 g/L) of Hjorthorn Salt and also filtrated supernatant have been tested. Ammonium removal degree can be obtained by measuring the initial concentration and cycle end concentration, while electricity generation ability can be calculated by voltage data which was continuously recorded by a multimeter. Results showed that this MDC system is suitable for ammonium removal in both of Hjorthorn Salt solutions and supernatant. The removal degrees in Hjorthorn Salt solution at desalination chamber were 53.1%, 52.7%, 60.34%, and 27.25% corresponding to initial NH4+ concentration of 340.7, 376, 376 and 2220 mg/L. The ammonium removal degrees in the supernatant were up to 53.4% and 43.7% under 21 and 71 hours operation, respectively. In power production aspect, MDC produced maximum voltage when potassium permanganate was used in the cathode chamber (217 mV). The power density in solutions of Hjorthorn Salt was relative low (46.73 - 86.61 mW/m3), but in the supernatant it showed a good performance, up to 227.7 and 190.8 mW/m3.

Page generated in 0.0996 seconds