• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Behavioral Model and Predistortion Algorithm to Mitigate Interpulse Instabilities Induced by Gallium Nitride Power Amplifiers in Multifunction Radars

Tua-Martinez, Carlos Gustavo 27 January 2017 (has links)
The incorporation of Gallium Nitride (GaN) Power Amplifiers (PAs) into future high power aperture radar systems is certain; however, the introduction of this technology into multifunction radar systems will present new challenges to radar engineers. This dissertation describes a broad investigation into amplitude and phase transients produced by GaN PAs when they are excited with multifunction radar waveforms. These transients are the result of self-heating electrothermal memory effects and are manifested as interpulse instabilities that can negatively impact the coherent processing of multiple pulses. A behavioral model based on a Foster network topology has been developed to replicate the measured amplitude and phase transients accurately. This model has been used to develop a digital predistortion technique that successfully mitigates the impact of the transients. The Moving Target Indicator (MTI) Improvement Factor and the Root Mean Square (RMS) Pulse-to-Pulse Stability are used as metrics to assess the impact of the transients on radar system performance and to test the effectiveness of a novel digital predistortion concept. / Ph. D. / The incorporation of Gallium Nitride (GaN) Power Amplifiers (PAs) into future radar systems is certain, and will present new challenges to radar engineers. This dissertation describes a broad investigation into signal transients produced by GaN PAs when they are excited with a wide variety of RF pulsed waveforms. These waveforms are representative of those used by a radar system to conduct multiple functions or missions. The transients are primarily the result of changes in the GaN PA gain due to self-heating, and are manifested as differences in consecutive pulses. These pulse-to-pulse differences negatively affect the ability of a radar system to extract information from a received echo. A behavioral model based on a Foster network topology has been developed to replicate the measured signal transients accurately. This model has been used to develop a digital predistortion technique that successfully counteracts the transients mitigating the impact of the transients. The Moving Target Indicator (MTI) Improvement Factor and the Root Mean Square (RMS) Pulse-to-Pulse Stability are used as performance metrics to quantify the effect of the transients on radar system performance and to test the effectiveness of a novel digital predistortion concept.

Page generated in 0.112 seconds