1 |
Video object segmentation. / 視頻物件分割法 / Video object segmentation. / Shi pin wu jian fen ge faJanuary 2004 (has links)
Mak Chun Man = 視頻物件分割法 / 麥振文. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2004. / Includes bibliographical references. / Text in English; abstracts in English and Chinese. / Mak Chun Man = Shi pin wu jian fen ge fa / Mai Zhenwen. / List of Figures --- p.III / List of Tables --- p.III / Chapter Chapter 1. --- Introduction --- p.1-1 / Chapter 1.1. --- A Brief Review on Video Objects Segmentation --- p.1-1 / Chapter 1.2. --- Objective of the Research Work --- p.1-3 / Chapter 1.3. --- Organization of the Thesis --- p.1-4 / Chapter 1.4. --- Notes on Publication --- p.1-5 / Chapter Chapter 2. --- Background Information --- p.2-1 / Chapter 2.1. --- Introduction --- p.2-1 / Chapter 2.2. --- Review of common video coding standards --- p.2-3 / Chapter 2.2.1 --- H.261 --- p.2-3 / Chapter 2.2.2 --- MPEG-1 --- p.2-4 / Chapter 2.2.3 --- MPEG-2 --- p.2-4 / Chapter 2.2.4 --- MPEG-4 --- p.2-5 / Chapter 2.3. --- Reviews of video objects segmentation methods --- p.2-7 / Chapter 2.3.1. --- Motion Segmentation --- p.2-8 / Chapter 2.3.2 --- Temporal & Spatial Segmentation --- p.2-9 / Chapter 2.3.2.1 --- Change Detection --- p.2-10 / Chapter 2.3.2.2 --- Morphological Filtering --- p.2-11 / Chapter 2.3.2.3 --- Image Segmentation --- p.2-12 / Chapter 2.3.2.4 --- Active Contour - Snake --- p.2-13 / Chapter 2.3.3 --- Application specific & human aided --- p.2-13 / Chapter 2.3.3.1 --- Manual Object Extraction --- p.2-13 / Chapter 2.3.3.2 --- Static Camera --- p.2-14 / Chapter 2.3.3.3 --- 3D video --- p.2-15 / Chapter 2.3.3.4 --- Video Conferencing and Face Segmentation --- p.2-15 / Chapter 2.3.3.5 --- Text Extraction --- p.2-16 / Chapter 2.4. --- Conclusions --- p.2-16 / Chapter Chapter 3. --- Global Motion Estimation --- p.3-1 / Chapter 3.1. --- Introduction --- p.3-1 / Chapter 3.2. --- Background Information --- p.3-2 / Chapter 3.2.1. --- Motion Models --- p.3-2 / Chapter 3.2.2. --- Estimation Methods --- p.3-5 / Chapter 3.3. --- Robust Regression: Least Median of Square Error --- p.3-8 / Chapter 3.3.1. --- Review of Least Median of Square Error --- p.3-8 / Chapter 3.3.2. --- Applying LMedS on Global Motion Estimation --- p.3-11 / Chapter 3.4. --- Modifications to LMedS --- p.3-12 / Chapter 3.5. --- Experimental Results --- p.3-15 / Chapter 3.6. --- Conclusions --- p.3-23 / Chapter 3.7. --- Notes on Publication --- p.3-24 / Chapter Chapter 4. --- System Overview --- p.4-1 / Chapter 4.1. --- Introduction --- p.4-1 / Chapter 4.2. --- Assumptions --- p.4-1 / Chapter 4.2.1. --- Objects in motion --- p.4-2 / Chapter 4.2.2. --- Motion is slow --- p.4-2 / Chapter 4.2.3. --- Change of object shapes --- p.4-2 / Chapter 4.2.4. --- Background size --- p.4-3 / Chapter 4.3. --- System Description --- p.4-3 / Chapter 4.3.1. --- Motion Detection --- p.4-5 / Chapter 4.3.1.1. --- Motion Estimation --- p.4-5 / Chapter 4.3.1.2. --- Global Motion Estimation & Compensation --- p.4-10 / Chapter 4.3.1.3. --- Change Detection Mask --- p.4-12 / Chapter 4.3.1.4. --- FP size thresholding --- p.4-14 / Chapter 4.3.1.5. --- FP clustering --- p.4-15 / Chapter 4.3.2. --- Spatial Features Extraction --- p.4-19 / Chapter 4.3.2.1. --- Edge Detection --- p.4-20 / Chapter 4.3.2.2. --- Region Growing --- p.4-20 / Chapter 4.3.3. --- Labeling and Boundary Tracking --- p.4-21 / Chapter 4.3.3.1. --- Objects' Locations Updates --- p.4-21 / Chapter 4.3.3.2. --- Foreground Pixel Clusters Labeling --- p.4-23 / Chapter 4.3.3.3. --- Slow and Rapid Components Tracking --- p.4-25 / Chapter 4.3.3.4. --- New Model Initialization --- p.4-26 / Chapter 4.3.4. --- Boundary Refinement --- p.4-26 / Chapter 4.3.4.1. --- Filling-in Process --- p.4-27 / Chapter 4.3.4.2. --- Boundary Correction --- p.4-27 / Chapter 4.4. --- Experimental Results --- p.4-32 / Chapter 4.4.1. --- Qualitative Evaluation --- p.4-32 / Chapter 4.4.1.1. --- Summary of the Qualitative Evaluation Results --- p.4-34 / Chapter 4.4.2. --- Quantitative Evaluation --- p.4-35 / Chapter 4.5. --- Conclusions --- p.4-46 / Chapter 4.6. --- Notes on Publications --- p.4-46 / Chapter Chapter 5. --- Conclusions & Future Works --- p.5-1 / Chapter 5.1. --- Contributions and Conclusions --- p.5-1 / Chapter 5.1.1. --- Multiple object support --- p.5-1 / Chapter 5.1.2. --- Global Motion Estimation --- p.5-2 / Chapter 5.2. --- Future Works --- p.5-3 / References
|
2 |
Video object segmentation.January 2006 (has links)
Wei Wei. / Thesis submitted in: December 2005. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2006. / Includes bibliographical references (leaves 112-122). / Abstracts in English and Chinese. / Abstract --- p.II / List of Abbreviations --- p.IV / Chapter Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Overview of Content-based Video Standard --- p.1 / Chapter 1.2 --- Video Object Segmentation --- p.4 / Chapter 1.2.1 --- Video Object Plane (VOP) --- p.4 / Chapter 1.2.2 --- Object Segmentation --- p.5 / Chapter 1.3 --- Problems of Video Object Segmentation --- p.6 / Chapter 1.4 --- Objective of the research work --- p.7 / Chapter 1.5 --- Organization of This Thesis --- p.8 / Chapter 1.6 --- Notes on Publication --- p.8 / Chapter Chapter 2 --- Literature Review --- p.10 / Chapter 2.1 --- What is segmentation? --- p.10 / Chapter 2.1.1 --- Manual Segmentation --- p.10 / Chapter 2.1.2 --- Automatic Segmentation --- p.11 / Chapter 2.1.3 --- Semi-automatic segmentation --- p.12 / Chapter 2.2 --- Segmentation Strategy --- p.14 / Chapter 2.3 --- Segmentation of Moving Objects --- p.17 / Chapter 2.3.1 --- Motion --- p.18 / Chapter 2.3.2 --- Motion Field Representation --- p.19 / Chapter 2.3.3 --- Video Object Segmentation --- p.25 / Chapter 2.4 --- Summary --- p.35 / Chapter Chapter 3 --- Automatic Video Object Segmentation Algorithm --- p.37 / Chapter 3.1 --- Spatial Segmentation --- p.38 / Chapter 3.1.1 --- k:-Medians Clustering Algorithm --- p.39 / Chapter 3.1.2 --- Cluster Number Estimation --- p.41 / Chapter 3.1.2 --- Region Merging --- p.46 / Chapter 3.2 --- Foreground Detection --- p.48 / Chapter 3.2.1 --- Global Motion Estimation --- p.49 / Chapter 3.2.2 --- Detection of Moving Objects --- p.50 / Chapter 3.3 --- Object Tracking and Extracting --- p.50 / Chapter 3.3.1 --- Binary Model Tracking --- p.51 / Chapter 3.3.1.2 --- Initial Model Extraction --- p.53 / Chapter 3.3.2 --- Region Descriptor Tracking --- p.59 / Chapter 3.4 --- Results and Discussions --- p.65 / Chapter 3.4.1 --- Objective Evaluation --- p.65 / Chapter 3.4.2 --- Subjective Evaluation --- p.66 / Chapter 3.5 --- Conclusion --- p.74 / Chapter Chapter 4 --- Disparity Estimation and its Application in Video Object Segmentation --- p.76 / Chapter 4.1 --- Disparity Estimation --- p.79 / Chapter 4.1.1. --- Seed Selection --- p.80 / Chapter 4.1.2. --- Edge-based Matching by Propagation --- p.82 / Chapter 4.2 --- Remedy Matching Sparseness by Interpolation --- p.84 / Chapter 4.2 --- Disparity Applications in Video Conference Segmentation --- p.92 / Chapter 4.3 --- Conclusion --- p.106 / Chapter Chapter 5 --- Conclusion and Future Work --- p.108 / Chapter 5.1 --- Conclusion and Contribution --- p.108 / Chapter 5.2 --- Future work --- p.109 / Reference --- p.112
|
3 |
A framework for video annotation, visualization, and interaction /Goldman, Daniel R. January 2007 (has links)
Thesis (Ph. D.)--University of Washington, 2007. / Vita. Includes bibliographical references (p. 100-107).
|
4 |
Video analysis in MPEG compressed domain /Gu, Lifang. January 2002 (has links)
Thesis (Ph.D.)--University of Western Australia, 2003.
|
5 |
Continuous media in fast networksAng, Chu Suan January 1992 (has links)
No description available.
|
6 |
Congestion control for packetised video on the internetWakeman, Ian John January 1995 (has links)
No description available.
|
7 |
Video coding for reliable communicationsRichardson, Iain Edward Garden January 1999 (has links)
No description available.
|
8 |
Performance evaluation and optimisation of the DVB/DAVIC cable modem protocolLicea, Victor Rangel January 2002 (has links)
No description available.
|
9 |
Performance and computational complexity optimization techniques in configurable video coding systemKwon, Nyeongkyu. 10 April 2008 (has links)
No description available.
|
10 |
Variable block size motion estimation hardware for video encoders.January 2007 (has links)
Li, Man Ho. / Thesis submitted in: November 2006. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2007. / Includes bibliographical references (leaves 137-143). / Abstracts in English and Chinese. / Abstract --- p.i / Acknowledgement --- p.iv / Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Motivation --- p.3 / Chapter 1.2 --- The objectives of this thesis --- p.4 / Chapter 1.3 --- Contributions --- p.5 / Chapter 1.4 --- Thesis structure --- p.6 / Chapter 2 --- Digital video compression --- p.8 / Chapter 2.1 --- Introduction --- p.8 / Chapter 2.2 --- Fundamentals of lossy video compression --- p.9 / Chapter 2.2.1 --- Video compression and human visual systems --- p.10 / Chapter 2.2.2 --- Representation of color --- p.10 / Chapter 2.2.3 --- Sampling methods - frames and fields --- p.11 / Chapter 2.2.4 --- Compression methods --- p.11 / Chapter 2.2.5 --- Motion estimation --- p.12 / Chapter 2.2.6 --- Motion compensation --- p.13 / Chapter 2.2.7 --- Transform --- p.13 / Chapter 2.2.8 --- Quantization --- p.14 / Chapter 2.2.9 --- Entropy Encoding --- p.14 / Chapter 2.2.10 --- Intra-prediction unit --- p.14 / Chapter 2.2.11 --- Deblocking filter --- p.15 / Chapter 2.2.12 --- Complexity analysis of on different com- pression stages --- p.16 / Chapter 2.3 --- Motion estimation process --- p.16 / Chapter 2.3.1 --- Block-based matching method --- p.16 / Chapter 2.3.2 --- Motion estimation procedure --- p.18 / Chapter 2.3.3 --- Matching Criteria --- p.19 / Chapter 2.3.4 --- Motion vectors --- p.21 / Chapter 2.3.5 --- Quality judgment --- p.22 / Chapter 2.4 --- Block-based matching algorithms for motion estimation --- p.23 / Chapter 2.4.1 --- Full search (FS) --- p.23 / Chapter 2.4.2 --- Three-step search (TSS) --- p.24 / Chapter 2.4.3 --- Two-dimensional Logarithmic Search Algorithm (2D-log search) --- p.25 / Chapter 2.4.4 --- Diamond Search (DS) --- p.25 / Chapter 2.4.5 --- Fast full search (FFS) --- p.26 / Chapter 2.5 --- Complexity analysis of motion estimation --- p.27 / Chapter 2.5.1 --- Different searching algorithms --- p.28 / Chapter 2.5.2 --- Fixed-block size motion estimation --- p.28 / Chapter 2.5.3 --- Variable block size motion estimation --- p.29 / Chapter 2.5.4 --- Sub-pixel motion estimation --- p.30 / Chapter 2.5.5 --- Multi-reference frame motion estimation . --- p.30 / Chapter 2.6 --- Picture quality analysis --- p.31 / Chapter 2.7 --- Summary --- p.32 / Chapter 3 --- Arithmetic for video encoding --- p.33 / Chapter 3.1 --- Introduction --- p.33 / Chapter 3.2 --- Number systems --- p.34 / Chapter 3.2.1 --- Non-redundant Number System --- p.34 / Chapter 3.2.2 --- Redundant number system --- p.36 / Chapter 3.3 --- Addition/subtraction algorithm --- p.38 / Chapter 3.3.1 --- Non-redundant number addition --- p.39 / Chapter 3.3.2 --- Carry-save number addition --- p.39 / Chapter 3.3.3 --- Signed-digit number addition --- p.40 / Chapter 3.4 --- Bit-serial algorithms --- p.42 / Chapter 3.4.1 --- Least-significant-bit (LSB) first mode --- p.42 / Chapter 3.4.2 --- Most-significant-bit (MSB) first mode --- p.43 / Chapter 3.5 --- Absolute difference algorithm --- p.44 / Chapter 3.5.1 --- Non-redundant algorithm for absolute difference --- p.44 / Chapter 3.5.2 --- Redundant algorithm for absolute difference --- p.45 / Chapter 3.6 --- Multi-operand addition algorithm --- p.47 / Chapter 3.6.1 --- Bit-parallel non-redundant adder tree implementation --- p.47 / Chapter 3.6.2 --- Bit-parallel carry-save adder tree implementation --- p.49 / Chapter 3.6.3 --- Bit serial signed digit adder tree implementation --- p.49 / Chapter 3.7 --- Comparison algorithms --- p.50 / Chapter 3.7.1 --- Non-redundant comparison algorithm --- p.51 / Chapter 3.7.2 --- Signed-digit comparison algorithm --- p.52 / Chapter 3.8 --- Summary --- p.53 / Chapter 4 --- VLSI architectures for video encoding --- p.54 / Chapter 4.1 --- Introduction --- p.54 / Chapter 4.2 --- Implementation platform - (FPGA) --- p.55 / Chapter 4.2.1 --- Basic FPGA architecture --- p.55 / Chapter 4.2.2 --- DSP blocks in FPGA device --- p.56 / Chapter 4.2.3 --- Advantages employing FPGA --- p.57 / Chapter 4.2.4 --- Commercial FPGA Device --- p.58 / Chapter 4.3 --- Top level architecture of motion estimation processor --- p.59 / Chapter 4.4 --- Bit-parallel architectures for motion estimation --- p.60 / Chapter 4.4.1 --- Systolic arrays --- p.60 / Chapter 4.4.2 --- Mapping of a motion estimation algorithm onto systolic array --- p.61 / Chapter 4.4.3 --- 1-D systolic array architecture (LA-ID) --- p.63 / Chapter 4.4.4 --- 2-D systolic array architecture (LA-2D) --- p.64 / Chapter 4.4.5 --- 1-D Tree architecture (GA-1D) --- p.64 / Chapter 4.4.6 --- 2-D Tree architecture (GA-2D) --- p.65 / Chapter 4.4.7 --- Variable block size support in bit-parallel architectures --- p.66 / Chapter 4.5 --- Bit-serial motion estimation architecture --- p.68 / Chapter 4.5.1 --- Data Processing Direction --- p.68 / Chapter 4.5.2 --- Algorithm mapping and dataflow design . --- p.68 / Chapter 4.5.3 --- Early termination scheme --- p.69 / Chapter 4.5.4 --- Top-level architecture --- p.70 / Chapter 4.5.5 --- Non redundant positive number to signed digit conversion --- p.71 / Chapter 4.5.6 --- Signed-digit adder tree --- p.73 / Chapter 4.5.7 --- SAD merger --- p.74 / Chapter 4.5.8 --- Signed-digit comparator --- p.75 / Chapter 4.5.9 --- Early termination controller --- p.76 / Chapter 4.5.10 --- Data scheduling and timeline --- p.80 / Chapter 4.6 --- Decision metric in different architectural types . . --- p.80 / Chapter 4.6.1 --- Throughput --- p.81 / Chapter 4.6.2 --- Memory bandwidth --- p.83 / Chapter 4.6.3 --- Silicon area occupied and power consump- tion --- p.83 / Chapter 4.7 --- Architecture selection for different applications . . --- p.84 / Chapter 4.7.1 --- CIF and QCIF resolution --- p.84 / Chapter 4.7.2 --- SDTV resolution --- p.85 / Chapter 4.7.3 --- HDTV resolution --- p.85 / Chapter 4.8 --- Summary --- p.86 / Chapter 5 --- Results and comparison --- p.87 / Chapter 5.1 --- Introduction --- p.87 / Chapter 5.2 --- Implementation details --- p.87 / Chapter 5.2.1 --- Bit-parallel 1-D systolic array --- p.88 / Chapter 5.2.2 --- Bit-parallel 2-D systolic array --- p.89 / Chapter 5.2.3 --- Bit-parallel Tree architecture --- p.90 / Chapter 5.2.4 --- MSB-first bit-serial design --- p.91 / Chapter 5.3 --- Comparison between motion estimation architectures --- p.93 / Chapter 5.3.1 --- Throughput and latency --- p.93 / Chapter 5.3.2 --- Occupied resources --- p.94 / Chapter 5.3.3 --- Memory bandwidth --- p.95 / Chapter 5.3.4 --- Motion estimation algorithm --- p.95 / Chapter 5.3.5 --- Power consumption --- p.97 / Chapter 5.4 --- Comparison to ASIC and FPGA architectures in past literature --- p.99 / Chapter 5.5 --- Summary --- p.101 / Chapter 6 --- Conclusion --- p.102 / Chapter 6.1 --- Summary --- p.102 / Chapter 6.1.1 --- Algorithmic optimizations --- p.102 / Chapter 6.1.2 --- Architecture and arithmetic optimizations --- p.103 / Chapter 6.1.3 --- Implementation on a FPGA platform . . . --- p.104 / Chapter 6.2 --- Future work --- p.106 / Chapter A --- VHDL Sources --- p.108 / Chapter A.1 --- Online Full Adder --- p.108 / Chapter A.2 --- Online Signed Digit Full Adder --- p.109 / Chapter A.3 --- Online Pull Adder Tree --- p.110 / Chapter A.4 --- SAD merger --- p.112 / Chapter A.5 --- Signed digit adder tree stage (top) --- p.116 / Chapter A.6 --- Absolute element --- p.118 / Chapter A.7 --- Absolute stage (top) --- p.119 / Chapter A.8 --- Online comparator element --- p.120 / Chapter A.9 --- Comparator stage (top) --- p.122 / Chapter A.10 --- MSB-first motion estimation processor --- p.134 / Bibliography --- p.137
|
Page generated in 0.0706 seconds