1 |
A MICROPROCESSOR-BASED DIGITAL VOICE NETWORKMoses, J., Sklar, R. 10 1900 (has links)
International Telemetering Conference Proceedings / October 22-25, 1984 / Riviera Hotel, Las Vegas, Nevada / The Digital Voice Network project is a 1984 IR&D program within the Microelectronic
Systems Division of the Hughes Aircraft Company. The project is intended to advance the
state-of-the-art in digital voice technology and demonstrate digital voice transmission using
advanced microprocessor technology and token passing bus network architecture. This
paper discusses the Digital Voice Network design architecture, voice terminal design and
implementation, and finally future plans to satisfy digital voice requirements in a military
environment.
|
2 |
Análise acústica para classificação de patologias da voz empregando análise de Componentes Principais, Redes Neurais Artificiais e Máquina de vetores de Suporte.ESPINOLA, Sérgio de Brito. 19 September 2017 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2017-09-19T15:36:01Z
No. of bitstreams: 1
Dissertacao_SergioEspinola_CEEI_UFCG.pdf: 59559230 bytes, checksum: 045a4738e365ab656e17da8b2185cb9b (MD5) / Made available in DSpace on 2017-09-19T15:36:01Z (GMT). No. of bitstreams: 1
Dissertacao_SergioEspinola_CEEI_UFCG.pdf: 59559230 bytes, checksum: 045a4738e365ab656e17da8b2185cb9b (MD5)
Previous issue date: 2014-03-12 / Estima-se que um terço da força de trabalho humana dependa da voz para
realização de seus ofícios. Procedimentos médicos avaliam a qualidade vocal do
indivíduo sendo os mais usados aqueles baseados na escuta da voz (subjetivo)
ou na inspeção das dobras (ou pregas) vocais por exames sofisticados
(objetivos, porém invasivos e caros). A análise acústica da voz busca extrair
medidas robustas para descrever vários fenômenos associados à produção da
fala ou características intrínsecas do ser humano como frequência fundamental,
timbre, etc. O presente estudo consiste na caracterização de um modelo de
processamento digital de Voz para apoio ao diagnóstico no contexto da
construção de sistemas de identificação automatizados de patologias da fala.
Para análise da técnica proposta foi utilizada uma base de dados (base KAY) que
foi estruturada por especialistas num arranjo de seis grupos de Patologias. A
esse, acrescentado também um de vozes “Normal”. Assim, 182 vozes foram
escolhidas, as quais dispunham de um catálogo indexado de cerca de 33
descritores, para cada voz, calculados da elocução da vogal \a\ sustentada. Ao
selecionar combinações desses descritores – como perturbações em frequência
(jitter), em amplitude (shimmer) etc, este estudo encontrou evidências
estatísticas e mostrou ser possível: a) Separar vozes normais das patológicas –
esperado, b) Separar patologias específicas (Paralisia, Edema de Reinke,
Nódulos) com acurácia de 100% (para a grande maioria dessas combinações) e
cerca de 92% (para Nódulos contra Reinke); c) Discriminá-las por meio de
classificadores (redes neurais artificiais e máquina de vetores de suporte) e
reduzir a dimensionalidade e complexidade (quantidade de dados) via técnica de
análise de componentes principais (ACP) sobre esses descritores para a
separação intra patologias; e d) Testes estatísticos com os grupos locais
confirmaram também limiares de indícios de Anormalidade presentes na
literatura. A utilização de menor quantidade de descritores – obtida pós ACP
(compressão) – mostrou-se também eficiente (mesmas taxas de acurácia). / It is estimated one-third of the work force relies on the use the voice in their jobs. The clinical diagnostic may be performed on voice listening by a specialist (subjective perspective) or through invasive and often not cheaper exams to
check vocal structures. The area of Voice Acoustic analyses aims to extract
robust measurements to describe several phenomena associated with voice
production, or human being particular characteristics like fundamental frequency,
timbre, etc. This study consisted of a model characterizing the digital voice
processing for support in building automatic systems for the identification of
disorders of speech (to aid diagnosis of pathologies). To support this
investigation and proposed model, a commercial voice database (KAY base) was
used with the endorsement from medical specialists. Derived acoustic analyses of
those speech samples data records were presented to professionals for
classification and six “severities groups” case-studied were built. After these
analyses, one Normal group was added and, at the end, 182 voices have been
selected. Their refined audio database contain, among other things, an indexed
list of vocal descriptors calculated on the presence of the utterance of the vowel
\a\ sustained speech. Statistical evidences were found: a) Difference between
pathological groups vocal descriptors to normal (expected); b) It was achieved
100% from true positive, most cases, among Paralysis, Reinke's Edema and
Nodules separations; c) from few cases, there were detected minor distinctions:
Paralysis, Reinke's Edema, Nodules and Edema (pair comparison) with
disordered groups; c) Among Machine Learning Algorithms (artificial neural
networks "RN" and support vector machine "SVM"), the technique of Principal
Components Analyses (PCA) and main statistics performed, it was found facts to
help to structure some automated recognition systems. These Supervised
learning methods showed that it could be possible to generate classification
predictions (disordered presence) for the response to new data; and d) Inner
tests also confirmed literature established reference thresholds. Hence
considering suitable combinations of descriptors with two machine learning
classifiers, as showed, is sufficient suitable and worthy.
|
3 |
DIGITAL VOICE DECODING IN TODAY'S TELEMETRY SYSTEMKnudtson, Kevin M., Glass, Randy 10 1900 (has links)
International Telemetering Conference Proceedings / October 25-28, 1999 / Riviera Hotel and Convention Center, Las Vegas, Nevada / Today’s telemetry systems can reduce spectrum demand and maintain secure voice
by encoding analog voice into digital data using; Continuously Variable Slope Delta
Modulation ( CVSD ) format and imbedding it into a telemetry stream. The model CSC-0390 DvD system is an excellent choice in decoding digital voice, designed with
flexibility, efficiency, and simplicity in mind. Flexibility in design brings forth a
capability of operating on a wide variety of telemetry systems and data formats without
any specialized interfaces. The utilization of 74HC series circuit technology makes this
DvD system efficient in design, low cost, and lower power consumption. In addition the
front panel display and control function is also is an example of Simplicity in design and
operation.
|
4 |
Эффективное управление контентом на основе многоагентных интеллектуальных систем : магистерская диссертация / Effective content management based on multi-agent intelligent systemsГубарев, А. В., Gubarev, A. V. January 2020 (has links)
В работе производиться анализ многоагентных интеллектуальных систем, их различия, способы и направления применения. Описываются программы и методы создания аудио управляемого синтеза лица. Также обсуждаются различные цифровые голосовые помощники, виртуальные агенты. Рассматривается гипотеза и перспективы создания визуального виртуального цифрового помощника для средств массовой информации. / The paper analyzes multi-agent intelligent systems, their differences, ways and directions of application. Programs and methods for creating audio-controlled face synthesis are described. Various digital voice assistants and virtual agents are also discussed. The hypothesis and prospects of creating a visual virtual digital assistant for mass media are considered.
|
Page generated in 0.0457 seconds