• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 24
  • 3
  • 3
  • 1
  • Tagged with
  • 32
  • 21
  • 19
  • 19
  • 15
  • 15
  • 14
  • 14
  • 14
  • 13
  • 12
  • 12
  • 12
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Copper oxide atomic layer deposition on thermally pretreated multi-walled carbon nanotubes for interconnect applications

Melzer, Marcel, Waechtler, Thomas, Müller, Steve, Fiedler, Holger, Hermann, Sascha, Rodriguez, Raul D., Villabona, Alexander, Sendzik, Andrea, Mothes, Robert, Schulz, Stefan E., Zahn, Dietrich R.T., Hietschold, Michael, Lang, Heinrich, Gessner, Thomas January 2013 (has links)
The following is the accepted manuscript of the original article: Marcel Melzer, Thomas Waechtler, Steve Müller, Holger Fiedler, Sascha Hermann, Raul D. Rodriguez, Alexander Villabona, Andrea Sendzik, Robert Mothes, Stefan E. Schulz, Dietrich R.T. Zahn, Michael Hietschold, Heinrich Lang and Thomas Gessner “Copper oxide atomic layer deposition on thermally pretreated multi-walled carbon nanotubes for interconnect applications”, Microelectron. Eng. 107, 223-228 (2013). Digital Object Identifier: 10.1016/j.mee.2012.10.026 Available via http://www.sciencedirect.com or http://dx.doi.org/10.1016/j.mee.2012.10.026 © 2013 Elsevier B.V. Carbon nanotubes (CNTs) are a highly promising material for future interconnects. It is expected that a decoration of the CNTs with Cu particles or also the filling of the interspaces between the CNTs with Cu can enhance the performance of CNT-based interconnects. The current work is therefore considered with thermal atomic layer deposition (ALD) of CuxO from the liquid Cu(I) β-diketonate precursor [(nBu3P)2Cu(acac)] and wet oxygen at 135°C. This paper focuses on different thermal in-situ pre-treatments of the CNTs with O2, H2O and wet O2 at temperatures up to 300°C prior to the ALD process. Analyses by transmission electron microscopy show that in most cases the CuxO forms particles on the multi-walled CNTs (MWCNTs). This behavior can be explained by the low affinity of Cu to form carbides. Nevertheless, also the formation of areas with rather layer-like growth was observed in case of an oxidation with wet O2 at 300°C. This growth mode indicates the partial destruction of the MWCNT surface. However, the damages introduced into the MWCNTs during the pre treatment are too low to be detected by Raman spectroscopy.
32

Surface chemistry of a Cu(I) beta-diketonate precursor and the atomic layer deposition of Cu2O on SiO2 studied by x-ray photoelectron spectroscopy

Dhakal, Dileep, Waechtler, Thomas, E. Schulz, Stefan, Gessner, Thomas, Lang, Heinrich, Mothes, Robert, Tuchscherer, Andre January 2014 (has links)
This article has been published online on 21st May 2014, in Journal of Vacuum Science & Technology A: Vac (Vol.32, Issue 4): http://scitation.aip.org/content/avs/journal/jvsta/32/4/10.1116/1.4878815?aemail=author DOI: 10.1116/1.4878815 This article may be accessed via the issue's table of contents at this link: http://scitation.aip.org/content/avs/journal/jvsta/32/4?aemail=author The surface chemistry of the bis(tri-n-butylphosphane) copper(I) acetylacetonate, [(nBu3P)2Cu(acac)], and the thermal atomic layer deposition (ALD) of Cu2O using this Cu precursor as reactant and wet oxygen as co-reactant on SiO2 substrates are studied by in-situ X-ray photoelectron spectroscopy (XPS). The Cu precursor was evaporated and exposed to the substrates kept at temperatures between 22 °C and 300 °C. The measured phosphorus and carbon concentration on the substrates indicated that most of the [nBu3P] ligands were released either in the gas phase or during adsorption. No disproportionation was observed for the Cu precursor in the temperature range between 22 °C and 145 °C. However, disproportionation of the Cu precursor was observed at 200 °C, since C/Cu concentration ratio decreased and substantial amounts of metallic Cu were present on the substrate. The amount of metallic Cu increased, when the substrate was kept at 300 °C, indicating stronger disproportionation of the Cu precursor. Hence, the upper limit for the ALD of Cu2O from this precursor lies in the temperature range between 145 °C and 200 °C, as the precursor must not alter its chemical and physical state after chemisorption on the substrate. 500 ALD cycles with the probed Cu precursor and wet O2 as co reactant were carried out on SiO2 at 145 °C. After ALD, in situ XPS analysis confirmed the presence of Cu2O on the substrate. Ex-situ spectroscopic ellipsometry indicated an average film thickness of 2.5 nm of Cu2O deposited with a growth per cycle of 0.05 Å/cycle. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) investigations depicted a homogeneous, fine, and granular morphology of the Cu2O ALD film on SiO2. AFM investigations suggest that the deposited Cu2O film is continuous on the SiO2 substrate.

Page generated in 0.0581 seconds