Spelling suggestions: "subject:"diluted"" "subject:"dilution""
1 |
Functionalized silica as a model material for species capture from dilute solutionsJanuary 2020 (has links)
archives@tulane.edu / Converting biomass to fuel and chemicals has attracted significant attention in recent years due to rising energy demands and the need for carbon neutral feedstocks. Lignin and cellulose are typically the main chemical components of biomass and must be depolymerized to yield sugars, which can then be enzymatically converted into alcohols for fuel. However, the depolymerization process yields side products including organic acids, phenols, and other aromatics that inhibit fermentation even at dilute concentrations. Here we investigate silicas with tailored organic surface functionalities as solid-phase adsorbents for selective removal of these chemical species.
Two classes of molecules, carboxylic acids and phenol derivatives, were used as model targets for capture using functionalized ordered mesoporous silica (OMS) as a support. Chapter (3) discusses acetic acid capture, where uptake was compared using primary, secondary, tertiary, and quaternary amine grafted OMS. It was found that increasing the degree of methylation on the amine increases uptake when an equimolar functional group surface density is used. However, the aminosilane packing density was found to be crucial to performance with variation depending on the ligand bulk as well as silica support properties. Solutions conditions during uptake were varied to conclude that electrostatic and hydrophobic interactions were the primary uptake mechanisms. In the case of guaiacol, reported in Chapter (4), uptake was compared on OMS surfaces with different hydrophobic functional groups. The key parameter found was that maximizing the amount of hydrophobic functional groups increases guaiacol uptake, but the interfacial surface must concurrently be wettable in aqueous solution. OMS materials were compared and
shown to be on par with commercial adsorbents for phenolic molecule uptake, showing potential to improve material performance by incorporating similar functionalities. Chapter (5) describes the synthesis and characterization of colloidally stable, 18 nm silica nanoparticles functionalized with amine groups. It was shown that amine grafting did not impact particle size and that the dispersed particles were stable over 30 days. Ninhydrin, fluorescamine, and carboxylic acid binding showed that the amines are present and accessible on the silica surface. These novel particles could be used in a range of nanotechnology applications. / 1 / Peter Miller
|
2 |
Persistent photoconductivity and the metal-insulator transition in Cd(_1-x)Mn(_x)Te:InLeighton, Christopher January 1997 (has links)
The persistent photoconductivity (PPC) effect in the diluted magnetic semiconductor Cd(_1-x)Mn(_x)Te:In has been studied in detail. Electrical transport measurements have been made on a large number of samples to build up an understanding of the phototransport properties of this material. In particular, the compositional dependence of the phototransport parameters has been measured up to x ≈ 0.2. Several samples exhibit an elevated temperature PPC effect which has been interpreted in terms of the formation of multiple DX centres. These samples can have a quenching temperature of up to 190 K, suggestmg that Cd(_1-x)Mn(_x)Te:In could be an interesting material in terms of applications of room temperature persistent photoconductors. The low field magnetoresistance has been measured and analysed quantitatively in order to attempt to identify the origin of the magnetoresistive effects in insulating and metallic samples. The positive magnetoresistance has been found to be linked with the magnetization of the sample. An anomalous negative magnetoresistance has been observed tinder certain experimental conditions. This negative magnetoresistance has been interpreted in terms of the formation of bound magnetic polarons and their contribution to spin-disorder scattering. The main body of this thesis is concerned with the study of the Metal-Insulator Transition (MIT). The PPC effect allows us to study the MIT in a continuous fashion by fine timing the carrier density by illumuiation. In this way we have made the first zero magnetic field study of the MIT in a magnetic semiconductor. The critical behaviour has been found to be consistent with the scaling theory of electron localization, which predicts a critical form σ = σ(_0)(n/n(_c) – 1)(^v). The critical conductivity exponent, v was determined to be close to one, while the critical carrier density, n(_e), was found to be ~ 2 x 10(^17) cm(^-3), for x = 0.08. The temperature dependence of the conductivity has been quantitatively analysed m both the metallic and insulating phases. On the insulating side of the transition, variable range hopping (VRH) conduction has been observed at low temperatures (down to 300 mK). The temperature dependence is consistent with VRH conduction with electron-electron interaction effects taken into account. In the metallic phase the temperature dependence of the conductivity (up to ~ 1 K) is consistent with a model where the zero temperature value of the conductivity is corrected by electron-electroninteraction effects, and the effects of weak localization. The magnitudes of these corrections are found to be in reasonable agreement with theoretical predictions. The electrical transport has also been studied in the weakly localized regime in Cd(_1-x)Mn(_x)Te:In and Cd(_1-x)Mn(_x)Te:In, Al. A rapid decrease in the conductivity occurs at low temperatures ( < 1.5 K). This is interpreted in terms of the effect of the s-d exchange interaction, which leads to the formation of bound magnetic polarons. It is suggested that this drop in conductivity can only be observed in the paramagnetic phase, and that spinglassordering has a significant effect on the temperature dependence of the conductivity at low temperatures.
|
3 |
Electronic states in externally modulated dilute magnetic semiconductor/superconductor hybridsAmthong, Attapon January 2012 (has links)
Dilute magnetic semiconductors (DMSs) are attractive. They are candidate materials for applications in novel spintronic devices. Because of the giant Zeemaneect in the paramagnetic state, a magnetic eld can be used to manipulate the spin and charge of carriers in DMSs. One possibility is to exploit the nonhomogeneous magnetic elds due to superconductors. In this thesis, the heterostructures of the planar DMS and superconductors in dierent geometries and superconducting states are investigated to understand the electronic structure of electrons in the DMS. The combination of a superconducting disk in the Meissner state and the planar DMS is studied using both simple and realistic models of the magnetic eld associated with the disk. The giant Zeeman interaction is found to substantially inuence the energies of magnetically conned states in the adjacent DMS. In the simple model eld, the giant Zeeman energy acts as an extra conning potential and results in spin dependent electron states exhibiting dierent spatial distributions, while the more realistic model eld results in conned states exhibiting a variety of mixed spin characters. The hybrid of a superconducting lm in a superconducting vortex state and the DMS is then explored. The concentrated magnetic eld due to an isolated vortex is shown to trap strongly spin polarised electron states. In the case of an Abrikosov lattice of vortices, interactions between vortex-bound states result in a band structure which can be controlled by the magnitude of an external uniform magnetic eld. It is found that the numerical band structures obtained using a basis of Landau states dier from those previously reported, leading to the development of a tight-binding theory to conrm their corrections. Another hybrid investigated is a square superconductor above the DMS. In this case, the arrangement of vortices is distorted by the boundary of the sample, leading to the possibility of multivortex state and/or giant vortex states. It is discovered that the magnetic eld due to the former state induces \molecular" electron states in the DMS, while that due to the latter state induces electron states with increased spatial distribution. Tight-binding theory is again used to describe the observed energy levels and the interactions between electron states induced by the magnetic elds due to separated vortices in the multivortex state.
|
4 |
Investigaton of the Suitability of Wide Bandgap Dilute Magnetic Semiconductors for SpintronicsKane, Matthew Hartmann 28 June 2007 (has links)
New semiconductor materials may enable next-generation â spintronicâ devices which exploit both the spin and charge of an electron for data processing, storage, and transfer. The realization of such devices would benefit greatly from room temperature ferromagnetic dilute magnetic semiconductors. Theoretical predictions have suggested that room temperature ferromagnetism may be possible in the wide bandgap semiconductors GaMnN and ZnMnO, though the existing models require input from the growth of high-quality materials. This work focuses on an experimental effort to develop high-quality materials in both of these wide bandgap materials systems.
ZnMnO and ZnCoO single crystals have been grown by a modified melt growth technique. X-ray diffraction was used to examine the structural quality and demonstrate the single crystal character of these devices. Substitutional transition metal incorporation has been verified by optical transmission and electron paramagnetic resonance measurements. No indications of ferromagnetic hysteresis are observed from the bulk single crystal samples, and temperature dependent magnetization studies demonstrate a dominant antiferromagnetic exchange interaction. Efforts to introduce ferromagnetic ordering were only successful through processing techniques which significantly degraded the material quality.
GaMnN thin films were grown by metalorganic chemical vapor deposition. Good crystalline quality and a consistent growth mode with Mn incorporation were verified by several independent characterization techniques. Substitutional incorporation of Mn on the Ga lattice site was confirmed by electron paramagnetic resonance. Mn acted as a deep acceptor in GaN. Nevertheless, ferromagnetic hysteresis was observed in the GaMnN films. The apparent strength of the magnetization correlated with the relative ratio of trivalent to divalent Mn. Valence state control through codoping with additional donors such as silicon was observed. Additional studies on GaFeN also showed a magnetic hysteresis. A comparison with implanted samples showed that the common origin to the apparent strong ferromagnetic hysteresis related to contribution from Mn substitutional ions. The observed magnetic hysteresis is due to the formation of Mn-rich regions during the growth process. This work demonstrated that the original intrinsic models for room temperature ferromagnetism in the wide bandgap semiconductors do not hold and the room temperature ferromagnetism in these materials results from extrinsic contributions.
|
5 |
Exchange interaction studies in magnetic semiconductors by neutron scattering /Wiren, Zachary Quincy. January 1900 (has links)
Thesis (Ph. D.)--Oregon State University, 2008. / Printout. Includes bibliographical references (leaves 102-108). Also available on the World Wide Web.
|
6 |
Verification of acoustic dissipation in two-phase dilute dispersed flow models in computational fluid dynamicsReeder, Brennan 10 December 2021 (has links)
With existing numerical models for fluid particle systems in CHEM, the acoustic-particle interactions associated with two-phase dilute dispersed flow can be captured and the particle model can be validated using experimental and analytical data and verified using numerical techniques. The experimental and analytical data come from Zink and Delsasso and provides data for particles of diameters 5 to 15 microns for frequencies between 500Hz to 13600Hz. In the particle number density measurements by Zink and Delsasso there was a 10% estimated error range. Using the fourth order skew symmetric flux in CHEM and the built in Eulerian and Lagrangian particle models, the sound wave dissipation was captured and found to be within the margin of error. Two additional tests were conducted to measure the effect of nonlinear acoustics and increased bulk density on the dissipation. Nonlinear effects showed no significant effect and the linear increase in bulk density showed a linear increase in dissipation.
|
7 |
Form of Aluminum(III) in Dilute Aqueous SolutionTurner, Laurie J. 04 1900 (has links)
<p> Using a potentiometric method on 10^-4M and 10^-5M Al(NO3)3 solutions at constant ionic strength (0.1 M KNO3) and temperature (25°C), titration curves were defined and examined with respect to three variables (total aluminum concentration, pH range, and time) in order to assess the reversibility of the aqueous system.</p> <p> Increasing pH titration interval decreased reversibility while increasing time interval led to a slight increase in reversibility. Decreasing the total aluminum concentration also slightly improved reversibility. Overall, the reversibility of the system was observed to be poor.</p> <p> Computer models were compared to experimental titration data in order to derive the speciation schemes which best fit the data. Polynuclear hydrolysis schemes fit the data best for the concentration levels as follows: Al^3+, Al(OH)4^-, and Al6(OH)15^3+ for 10^-5M Alt. Al^3+, Al(OH)4^-, and Al8(OH)20^4+ and/or Al13(OH)32^7+ for 10^-4M Alt. / Thesis / Master of Science (MSc)
|
8 |
An Experimental Study of the Effects of Aqueous Polymer Solutions on a Liquid Boundary LayerShen, Chi-Hung 05 1900 (has links)
<p> This thesis is an experimental study of the effects of injecting dilute polymer solutions into a turbulent boundary layer developed on a flat plate submerged in water.</p> <p> A flat plate having a plexiglass surface together with a separate leading edge piece were specially designed for observing the boundary layer phenomena. Aqueous polymer solutions were
introduced into the boundary layer through a slit situated in the leading edge piece. Hot-film anemometer technique was employed in the measurements of velocity profiles, turbulence intensities and lateral correlation coefficients at several locations on the plate. The investigation was carried out for two Reynolds Numbers, based on the length of the plate, of 2.4 x 10^5 and 6.4 x 10^5. The variation in the drag force with respect to the polymer concentrations and the injection rates was assessed based on the velocity profile data. It was found that the momentum diffusivity was smaller than for pure water, and that the presence of the polymer molecules seemed to promote a more uniform distribution of the sizes of the turbulence eddies.</p> / Thesis / Master of Engineering (MEngr)
|
9 |
The Effect of Shear Rate on the Inherent and Intrinsic Viscosity of Dilute Polystyrene SolutionsSharman, L. James 08 1900 (has links)
A study of the effect of shear rate on the inherent and intrinsic viscosities of polystyrene
fractions, in dilute solution was carried out. Inherent viscosities were determined for five
fractions (of molecular weights ranging from 2.9 x 10 to 4.8 x 106); in three solvents (Benzene, Toluene and Methyl Ethyl Ketone); at five temperatures (from 15°C to 85°C); and shear rates ranging from 1.0 x 103 to 2.8 x 104 sec.-1. Inherent viscosities thus determined were extrapolated to zero rate of shear and the extrapolated values plotted against concentration to determine intrinsic viscosities at zero rate of shear, [N] D=0 The inherent viscosity decreased with increasing shear rate. The slope of the curve of inherent viscosity vs shear rate was found to increase (ie become more negative) with increasing concentration, temperature and molecular weight and to be less in a poor solvent than in a good solvent. At very high molecular weights the value of inherent viscosity was found to decrease non-linearly with shear rate. The intrinsic viscosity was found to decrease
with increasing shear rate. The slope of the [N] vs D curve was found to increase with increasing molecular weight and decreasing temperature; the slopes were smaller the
poorer the solvent. For the three lower fractions the intrinsic viscosity was found to decrease with increasing temperature, very slightly in Methyl Ethyl Ketone and appreciably in
Benzene and Toluene, the relative being greater at higher molecular weights. With the two highest fractions this trend was reversed. The slope of the [N] D=0 vs T curve becoming less negative (and actually positive for Benzene end Toluene). The [N] vs T curves ( [N] at free fall) for the three lower fractions were parallel to those at zero rate of shears but of lower intrinsic viscosity values. With the two highest fractions, the slope of the [N] vs T curve became less negative but not to as great a degree as was found with [N] D=0 vs curves. Intrinsic viscosities obtained at zero rate of shear were applied to the Flory-Fox theory. Calculated intrinsic viscosities for polystyrene fractions in Benzene and Toluene were found to agree to within+-4% of the experimental results. For Methyl Ethyl Ketone a wide variation in values was obtained. / Thesis / Master of Science (MS)
|
10 |
Superabsorbent Polymers from the Cell Wall of Zygomycetes FungiZamani, Akram January 2010 (has links)
The present thesis presents new renewable, antimicrobial and biodegradable superabsorbent polymers (SAPs), produced from the cell wall of zygomycetes fungi. The cell wall was characterized and chitosan, being one of the most important ingredients, was extracted, purified, and converted to SAP for use in disposable personal care products designed for absorption of different body fluids. The cell wall of zygomycetes fungi was characterized by subsequent hydrolysis with sulfuric and nitrous acids and analyses of the products. The main ingredients of the cell wall were found to be polyphosphates (4-20%) and copolymers of glucosamine and N-acetyl glucosamine, i.e. chitin and chitosan (45-85%). The proportion of each of these components was significantly affected by the fungal strain and also the cultivation conditions. Moreover, dual functions of dilute sulfuric acid in relation to chitosan, i.e. dissolution at high temperatures and precipitation at lowered temperatures, were discovered and thus used as a basis for development of a new method for extraction and purification of the fungal chitosan. Treatment of the cell wall with dilute sulfuric acid at room temperature resulted in considerable dissolution of the cell wall polyphosphates, while chitosan and chitin remained intact in the cell wall residue. Further treatment of this cell wall residue, with fresh acid at 120°C, resulted in dissolution of chitosan and its separation from the remaining chitin/chitosan of the cell wall skeleton which was not soluble in hot acid. Finally, the purified fungal chitosan (0.34 g/g cell wall) was recovered by precipitation at lowered temperatures and pH 8-10. The purity and the yield of fungal chitosan in the new method were significantly higher than that were obtained in the traditional acetic acid extraction method. As a reference to pure chitosan, SAP from shellfish chitosan, was produced by conversion of this biopolymer into water soluble carboxymethyl chitosan (CMCS), gelation of CMCS with glutaraldehyde in aqueous solutions (1-2%), and drying the resultant gel. Effects of carboxymethylation, gelation and drying conditions on the water binding capacity (WBC) of the final products, were investigated. Finally, choosing the best condition, a biological superabsorbent was produced from zygomycetes chitosan. The CMCS-based SAPs were able to absorb up to 200 g water/g SAP. The WBC of the best SAP in urine and saline solutions was 40 and 32 g/g respectively, which is comparable to the WBC of commercially acceptable SAPs under identical conditions (34-57 and 30-37 g/g respectively). / <p>Disputationen sker fredagen den 1 oktober kl. 10.00 i KA-salen, Kemigården 4, Chalmers, Göteborg</p>
|
Page generated in 0.0412 seconds