Spelling suggestions: "subject:"dilution refrigeration"" "subject:"dilution refrigerated""
1 |
Dilution refrigerator : Design, construction and performanceFerguson, A. J. L. January 1986 (has links)
No description available.
|
2 |
Ultra-low Temperature Measurements of London Penetration Depth in Iron Selenide Telluride SuperconductorsDiaconu, Andrei 20 December 2013 (has links)
The newly discovered iron based superconductors have captivated the attention of the scientific community due to the unusual mechanism behind their superconductivity and their promise as the next generation high temperature superconductors. After a century of superconductor research, the physical mechanism behind high temperature superconductivity is still not understood. These new materials bring renewed hope in elucidating the pairing mechanism responsible with high temperature superconductors and achieving the ultimate goal of the field, room temperature superconductivity. Consequently, a deeper understanding of the intriguing properties of iron based materials is essential.
A great deal about the pairing mechanism of Cooper electron pairs can be inferred from the symmetry of their pairing wave function or order parameter. One of the most involved probes for studying the pairing symmetry is the London penetration depth. The low temperature behavior of London penetration depth in superconductors is directly related to the density of states and provides a powerful tool for investigating low-lying quasiparticle energy and, for this very reason, can give valuable hints on superconducting gap symmetry.
The work presented focuses on investigating the pairing symmetry in the Fe1+y(Te1−xSex) system using a radio-frequency tunnel diode oscillator (TDO) technique for precise measurements of the temperature dependence of their in-plane penetration depth. The TDO technique, based on an original concept involving the use of planar inductors in an novel configuration, was implemented on a dilution refrigerator to investigate a significant number of single crystal samples, with nominal Se concentrations of 36%, 40%, 43% and 45% respectively, down to temperatures as low as 50 mK.
A systematic study together with a comprehensive analysis regarding the order parameter symmetry in the Fe1+y(Te1−xSex) system is presented. In many cases we found that London penetration depth shows an upturn below at low temperatures, indicative of a paramagnetic-type contribution. Also the low-temperature behavior of penetration depth is best described by a quadratic power law with no systematic dependence on the Se concentration. Most importantly, in the limit of T → 0, in some samples we observed a narrow region of linear temperature dependence, suggestive of nodes in the superconducting gap of Fe1+y(Te1−xSex).
|
3 |
Dynamique dans les fluides quantiques : Etude des excitations collectives dans un liquide de Fermi 2D / Dynamics in quantum fluid : Study of collective excitations in a bidimensional Fermi liquidSultan, Ahmad 25 May 2012 (has links)
L'4He et l'3He sont des systèmes modèles pour comprendre les propriétés quantiques de la matière fortement corrélée. C'est pour cette raison que plusieurs études ont été consacrées à la compréhension de leur dynamique. A basses températures où les effets quantiques jouent un rôle essentiel, les excitations élémentaires dans l'4He sont décrites par un mode collectif d'excitations: phonon-roton. Par contre pour un système d'3He la description est plus complexe, le spectre d'excitation a deux composantes: un mode collectif (zéro-son) et un continuum d'excitations incohérentes de type particule-trou. Les deux sont bien décrites par la théorie de Landau des liquides de Fermi qui trouve sa validité pour des petits vecteurs d'onde. Jusqu'à présent, on supposait que la dynamique dans les liquides de Fermi à vecteurs d'onde élevés était essentiellement incohérente. Cette thèse porte sur l'exploration, par diffusion inélastique de neutrons, des excitations collectives dans l'3He liquide 2D adsorbé sur un substrat de graphite. Un tel travail expérimental requiert trois ingrédients essentiels : un réfrigérateur à dilution afin de travailler à basses températures, un spectromètre temps de vol afin de mesurer le facteur de structure dynamique du système et un substrat solide (graphite exfolié ZYX) pour la préparation de films d'3He-2D par physisorption. Nos expériences sur ces films d'3He déposés en deuxième couche sur de l'4He solide adsorbé sur le graphite nous ont permis de faire les observations suivantes : à petit vecteur d'onde, le zéro-son est plus proche de la bande particule-trou que celui observé dans le cas de l'3He massif, tandis qu'à fort vecteur d'onde le mode collectif entre dans le continuum et réapparait de l'autre côté. Cette nouvelle branche, observée pour la première fois, est aujourd'hui décrite par la théorie dynamique à N-corps développée par nos collaborateurs de l'université Johannes Kepler de Linz, Autriche. Au cours de ce travail de thèse plusieurs techniques expérimentales ont été développées, en particulier, un réfrigérateur à dilution sans fluide cryogénique robuste adapté à des expériences de diffusion neutronique. Son optimisation a permis de réduire le temps de refroidissement de ce type de réfrigérateurs. / 4He and 3He are model systems for understanding quantum properties of strongly interacting matter. For this reason many studies have been devoted for the understanding of their dynamics. At low temperatures at which quantum effects play an essential role, the elementary excitations in 4He are described by a phonon-roton collective mode. For 3He, the physical description is more complicated, the spectrum has two components: collective excitations (zero-sound) and incoherent particle-hole excitations. Both are described by Landau's theory of Fermi liquids which is valid at low wave vectors. So far, it was thus believed that the dynamics at high wave vectors is essentially incoherent. This thesis is mainly concerned by exploring the collective excitations of a two dimensional 3He film adsorbed on graphite, using inelastic neutron scattering. Such an experiment has three main requirements: a dilution refrigerator in order to work at low temperatures, a time of flight spectrometer for measuring the dynamical structure factor of 3He and a solid substrate (exfoliated graphite ZYX) to obtain a two dimensional film by physical adsorption. Our investigations of the dynamics in two-dimensional 3He adsorbed on graphite preplated with 4He films have revealed important features: At low wave-vectors, the zero-sound mode is considerably depressed compared to bulk 3He. At higher wave vectors, the collective excitations branch enters the particle-hole continuum, and reappears at the lower energy branch of the continuum. This new branch, observed for the first time, is described by the dynamic many-body theory developed by our collaborators from Johannes Kepler University, Linz, Austria. During this work several low temperature techniques have been developed, in particular a robust, cryogen-free dilution refrigerator adapted to the demanding conditions of a neutron scattering experiments. Due to its efficient design, the cooling time has been considerably reduced compared to that of refrigerators of the same type developed in the past.
|
4 |
The influence of cation doping on the electronic properties of Sr₃Ru₂O₇Farrell, Jason January 2008 (has links)
Sr₃Ru₂O₇ is a quasi-two-dimensional metal and has a paramagnetic ground state that is heavily renormalised by electron-electron correlations and magnetic exchange interactions. Inextricably linked to this renormalisation is the metamagnetism of Sr₃Ru₂O₇ - a rapid rise in uniform magnetisation over a narrow range of applied magnetic field. Knowledge of the zero-field physics is essential to any description of the metamagnetism. Light may be shed on the enigmatic ground state of Sr₃Ru₂O₇ by doping the crystal lattice with foreign cations: this is the primary purpose of the original research referred to in this thesis, in which studies of some of the electronic properties of crystals of cation-doped Sr₃Ru₂O₇ are reported. Single crystals of Sr₃(Ru[subscript(1-x)]Ti[subscript(x)])₂O₇ and Sr₃(Ru[subscript(1-x)]Cr[subscript(x)])₂O₇ have been synthesised in an image furnace and some of the properties of these crystals have been measured. Evidence that indicates the emergence of a spin density wave as a function of Ti-doping in Sr₃(Ru[subscript(1-x)]Ti[subscript(x)])₂O₇ is presented. Time-dependent magnetic irreversibility has been observed in samples of Sr₃(Ru[subscript(1-x)]Cr[subscript(x)])₂O₇, thus hinting at the involvement of the RKKY mechanism in these materials. Regarding cation doping out of the conducting RuO₂ planes, samples of (Sr[subscript(1-y)]La[subscript(y)])₃Ru₂O₇ have been grown and investigated. Both the Sommerfeld coefficient and the Fermi liquid A coefficient of (Sr[subscript(1-y)]La[subscript(y)])₃Ru₂O₇ are found to decrease as a function of y (0 ≤ y ≤ 0.02); these observations point towards a reduction in the thermodynamic mass of the Landau quasiparticles. Results from magnetoresistance and magnetisation measurements indicate that the metamagnetism of the (Sr[subscript(1-y)]La[subscript(y)])₃Ru₂O₇ series probably cannot be explained by a rigid band-shift model. Also, some aspects of these data imply that the metamagnetism cannot be fully accounted for by a spin fluctuation extension to the Ginzburg-Landau theory of uniform magnetisation.
|
5 |
Charge dynamics in superconducting double dotsEsmail, Adam Ashiq January 2017 (has links)
The work presented in this thesis investigates transitions between quantum states in superconducting double dots (SDDs), a nanoscale device consisting of two aluminium superconducting islands coupled together by a Josephson junction, with each dot connected to a normal state lead. The energy landscape consists of a two level manifold of even charge parity Cooper pair states, and continuous bands corresponding to charge states with single quasiparticles in one or both islands. These devices are fabricated using shadow mask evaporation, and are measured at sub Kelvin temperatures using a dilution refrigerator. We use radio frequency reflectometry to measure quantum capacitance, which is dependent on the quantum state of the device. We measure the quantum capacitance as a function of gate voltage, and observe capacitance maxima corresponding to the Josephson coupling between even parity states. We also perform charge sensing and detect odd parity states. These measurements support the theoretical model of the energy landscape of the SDD. By measuring the quantum capacitance in the time domain, we observe random switching of capacitance between two levels. We determine this to be the stochastic breaking and recombination of single Cooper pairs. By carrying out spectroscopy of the bath responsible for the pair breaking we attribute it to black-body radiation in the cryogenic environment. We also drive the breaking process with a continuous microwave signal, and find that the rate is linearly proportional to incident power. This suggests that a single photon process is responsible, and demonstrates the potential of the SDD as a single photon microwave detector. We investigate this mechanism further, and design an experiment in which the breaking rate is enhanced when the SDD is in the antisymmetric state rather than the symmetric state. We also measure the quantum capacitance of a charge isolated double dot. We observe 2e periodicity, indicating the tunnelling of Cooper pairs and the lack of occupation of quasiparticle states. This work is relevant to the range of experiments investigating the effect of non-equilibrium quasiparticles on the operation of superconducting qubits and other superconducting devices.
|
6 |
Cooling of electrically insulated high voltage electrodes down to 30 mK / Kühlung von elektrisch isolierten Hochspannungselektroden bis 30 mKEisel, Thomas 07 November 2011 (has links) (PDF)
The Antimatter Experiment: Gravity, Interferometry, Spectroscopy (AEGIS) at the European Organization for Nuclear Research (CERN) is an experiment investigating the influence of earth’s gravitational force upon antimatter. To perform precise measurements the antimatter needs to be cooled to a temperature of 100 mK. This will be done in a Penning trap, formed by several electrodes, which are charged with several kV and have to be individually electrically insulated. The trap is thermally linked to a mixing chamber of a 3He-4He dilution refrigerator.
Two link designs are examined, the Rod design and the Sandwich design. The Rod design electrically connects a single electrode with a heat exchanger, immersed in the helium of the mixing chamber, by a copper pin. An alumina ring and the helium electrically insulate the Rod design. The Sandwich uses an electrically insulating sapphire plate sandwiched between the electrode and the mixing chamber. Indium layers on the sapphire plate are applied to improve the thermal contact. Four differently prepared test Sandwiches are investigated. They differ in the sapphire surface roughness and in the application method of the indium layers.
Measurements with static and sinusoidal heat loads are performed to uncover the behavior of the thermal boundary resistances. The thermal total resistance of the best Sandwich shows a temperature dependency of T-2,64 and is significantly lower, with roughly 30 cm2K4/W at 50 mK, than experimental data found in the literature. The estimated thermal boundary resistance between indium and sapphire agrees very well with the value of the acoustic mismatch theory at low temperatures.
In both designs, homemade heat exchangers are integrated to transfer the heat to the cold helium. These heat exchangers are based on sintered structures to increase the heat transferring surface and to overcome the significant influence of the thermal resistance (Kapitza resistance). The heat exchangers are optimized concerning the adherence of the sinter to the substrate and its sinter height, e.g. its thermal penetration length.
Ruthenium oxide metallic resistors (RuO2) are used as temperature sensors for the investigations. They consist of various materials, which affect the reproducibility. The sensor conditioning and the resulting good reproducibility is discussed as well.
|
7 |
Cooling of electrically insulated high voltage electrodes down to 30 mKEisel, Thomas 04 October 2011 (has links)
The Antimatter Experiment: Gravity, Interferometry, Spectroscopy (AEGIS) at the European Organization for Nuclear Research (CERN) is an experiment investigating the influence of earth’s gravitational force upon antimatter. To perform precise measurements the antimatter needs to be cooled to a temperature of 100 mK. This will be done in a Penning trap, formed by several electrodes, which are charged with several kV and have to be individually electrically insulated. The trap is thermally linked to a mixing chamber of a 3He-4He dilution refrigerator.
Two link designs are examined, the Rod design and the Sandwich design. The Rod design electrically connects a single electrode with a heat exchanger, immersed in the helium of the mixing chamber, by a copper pin. An alumina ring and the helium electrically insulate the Rod design. The Sandwich uses an electrically insulating sapphire plate sandwiched between the electrode and the mixing chamber. Indium layers on the sapphire plate are applied to improve the thermal contact. Four differently prepared test Sandwiches are investigated. They differ in the sapphire surface roughness and in the application method of the indium layers.
Measurements with static and sinusoidal heat loads are performed to uncover the behavior of the thermal boundary resistances. The thermal total resistance of the best Sandwich shows a temperature dependency of T-2,64 and is significantly lower, with roughly 30 cm2K4/W at 50 mK, than experimental data found in the literature. The estimated thermal boundary resistance between indium and sapphire agrees very well with the value of the acoustic mismatch theory at low temperatures.
In both designs, homemade heat exchangers are integrated to transfer the heat to the cold helium. These heat exchangers are based on sintered structures to increase the heat transferring surface and to overcome the significant influence of the thermal resistance (Kapitza resistance). The heat exchangers are optimized concerning the adherence of the sinter to the substrate and its sinter height, e.g. its thermal penetration length.
Ruthenium oxide metallic resistors (RuO2) are used as temperature sensors for the investigations. They consist of various materials, which affect the reproducibility. The sensor conditioning and the resulting good reproducibility is discussed as well.
|
Page generated in 0.1013 seconds