• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 5
  • 5
  • 5
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Study of Magnetization Switching in Coupled Magnetic Nanostructured Systems

Radu, Cosmin 19 December 2008 (has links)
A study of magnetization dynamics experiments in nanostructured materials using the rf susceptibility tunnel diode oscillator (TDO) method is presented along with a extensive theoretical analysis. An original, computer controlled experimental setup that measures the change in susceptibility with the variation in external magnetic field and sample temperature was constructed. The TDO-based experiment design and construction is explained in detail, showing all the elements of originality. This experimental technique has proven reliable for characterizing samples with uncoupled magnetic structure and various magnetic anisotropies like: CrO2 , FeCo/IrMn and Co/SiO2 thin films. The TDO was subsequently used to explore the magnetization switching in coupled magnetic systems, like synthetic antiferromagnet (SAF) structures. Magnetoresistive random access memory (MRAM) is an important example of devices where the use of SAF structure is essential. To support the understanding of the SAF magnetic behavior, its configuration and application are reviewed and more details are provided in an appendix. Current problems in increasing the scalability and decreasing the error rate of MRAM devices are closely connected to the switching properties of the SAF structures. Several theoretical studies that were devoted to the understanding of the concepts of SAF critical curve are reviewed. As one can notice, there was no experimental determination of SAF critical curve, due to the difficulties in characterizing a magnetic coupled structure. Depending of the coupling strength between the two ferromagnetic layers, on the SAF critical curve one distinguishes several new features, inexistent in the case of uncoupled systems. Knowing the configuration of the SAF critical curve is of great importance in order to control its switching characteristics. For the first time a method of experimentally recording the critical curve for SAF is proposed in this work. In order to overcome technological limitations, a new way of recording the critical curve by using an additional magnetic bias field was explored.
2

Ultra-low Temperature Measurements of London Penetration Depth in Iron Selenide Telluride Superconductors

Diaconu, Andrei 20 December 2013 (has links)
The newly discovered iron based superconductors have captivated the attention of the scientific community due to the unusual mechanism behind their superconductivity and their promise as the next generation high temperature superconductors. After a century of superconductor research, the physical mechanism behind high temperature superconductivity is still not understood. These new materials bring renewed hope in elucidating the pairing mechanism responsible with high temperature superconductors and achieving the ultimate goal of the field, room temperature superconductivity. Consequently, a deeper understanding of the intriguing properties of iron based materials is essential. A great deal about the pairing mechanism of Cooper electron pairs can be inferred from the symmetry of their pairing wave function or order parameter. One of the most involved probes for studying the pairing symmetry is the London penetration depth. The low temperature behavior of London penetration depth in superconductors is directly related to the density of states and provides a powerful tool for investigating low-lying quasiparticle energy and, for this very reason, can give valuable hints on superconducting gap symmetry. The work presented focuses on investigating the pairing symmetry in the Fe1+y(Te1−xSex) system using a radio-frequency tunnel diode oscillator (TDO) technique for precise measurements of the temperature dependence of their in-plane penetration depth. The TDO technique, based on an original concept involving the use of planar inductors in an novel configuration, was implemented on a dilution refrigerator to investigate a significant number of single crystal samples, with nominal Se concentrations of 36%, 40%, 43% and 45% respectively, down to temperatures as low as 50 mK. A systematic study together with a comprehensive analysis regarding the order parameter symmetry in the Fe1+y(Te1−xSex) system is presented. In many cases we found that London penetration depth shows an upturn below at low temperatures, indicative of a paramagnetic-type contribution. Also the low-temperature behavior of penetration depth is best described by a quadratic power law with no systematic dependence on the Se concentration. Most importantly, in the limit of T → 0, in some samples we observed a narrow region of linear temperature dependence, suggestive of nodes in the superconducting gap of Fe1+y(Te1−xSex).
3

Study of Magnetization Switching in Coupled Magnetic Nanostructured Systems using a Tunnel Diode Oscillator

Khan, Mohammad Asif 01 May 2018 (has links)
Static techniques to measure different magnetic properties of coupled magnetic nanostructured systems is researched and documented with an extensive analysis of the tunnel diode oscillator (TDO). The VSM was used to obtain the major hysteresis loop for the samples and the TDO was used to measure the magnetic susceptibility. The magnetic susceptibility was employed to conceive the static critical curve. The thesis describes both equipments, VSM and TDO, that were used to obtain data for our experiments. Albeit a more comprehensive outlook on the TDO is provided. The theoretical functionality of TDO, previous successful applications for experiments, and the physical setup in the laboratory is explored. The novel addition of the double Helmholtz coil in this setup is described. The viability of replacement of the big electromagnet and the advantages of the Helmholtz coil are discussed. Magnetization dynamics in a series of FeCoB/Ru/FeCoB synthetic antiferromagnetic samples were investigated via reversible susceptibility measurements acquired through the TDO. The major hysteresis loop generated by the VSM were used to calculate the coercivity and magnetic saturation of the sample. The VSM and TDO were subsequently used to explore the magnetization switching in a di_erent coupled magnetic system, the exchange bias samples. A range of NiFe/FeMn samples were studied with varying thickness of the antiferromagnetic layer.
4

Ultra-low Temperature Properties of Correlated Materials

Radmanesh, Seyed Mohammad Ali 06 August 2018 (has links)
Abstract After the discovery of topological insulators (TIs), it has come to be widely recognized that topological states of matter can actually be widespread. In this sense, TIs have established a new paradigm about topological materials. Recent years have seen a surge of interest in topological semimetals, which embody two different ways of generalizing the effectively massless electrons to bulk materials. Dirac and, particularly, Weyl semimetals should support several transport and optical phenomena that are still being sought in experiments. A number of promising experimental results indicate superconductivity in members of half-Hesuler semimetals which realize the mixing singlet and triplet pairing symmetry. We now turn to results we got through the work on topological semimetals. This work presents quantum high field transports on Dirac and Weyl topological semimetals including Sr1-yMn1-zSb2 (y, z < 0.1), YbMnBi2 and TaP. In case of Sr1-yMn1-zSb2 (y, z < 0.1), massless relativistic fermion was reported with m* = 0.04-0.05m0. This material presented a ferromagnetic order for in 304 K < T < 565 K, but a canted antiferromagnetic order with a net ferromagnetic component for T < 304 K. These are considered striking features of Dirac fermions For YbMnBi2, we reported the unusual interlayer quantum transport behavior in magnetoresistivity, resulting from the zeroth LL mode observed in this time reversal symmetry breaking type II Weyl semimetal. Also, for Weyl semimetal TaP the measurements probed multiple Fermi pockets, from which nontrivial π Berry phase and Zeeman splitting were extracted. Our ultra-low penetration depth measurements on half-Heuslers YPdBi and TbPdBi revealed a power- law behavior with n= 2.76 ± 0.04 for YPdBi samples and n=2.6 ± 0.3 for TbPdBi sample. We may conclude the exponent n > 2 implies nodless superconducting gap in our samples. Also, we found that despite the increase in magnetic correlations from YPdBi to TbPdBi, superconductivity remains robust in both systems which indicates that AF fluctuations do not play a major role in superconducting mechanism.
5

Correlated low temperature states of YFe2Ge2 and pressure metallised NiS2

Semeniuk, Konstantin January 2018 (has links)
While the free electron model can often be surprisingly successful in describing properties of solids, there are plenty of materials in which interactions between electrons are too significant to be neglected. These strongly correlated systems sometimes exhibit rather unexpected, unusual and useful phenomena, understanding of which is one of the aims of condensed matter physics. Heat capacity measurements of paramagnetic YFe$_{2}$Ge$_{2}$ give a Sommerfeld coefficient of about 100 mJ mol$^{−1}$ K$^{−2}$, which is about an order of magnitude higher than the value predicted by band structure calculations. This suggests the existence of strong electronic correlations in the compound, potentially due to proximity to an antiferromagnetic quantum critical point (QCP). Existence of the latter is also indicated by the non-Fermi liquid T$^{3/2}$ behaviour of the low temperature resistivity. Below 1.8 K a superconducting phase develops in the material, making it a rare case of a non-pnictide and non-chalcogenide iron based superconductor with the 1-2-2 structure. This thesis describes growth and study of a new generation of high quality YFe$_{2}$Ge$_{2}$ samples with residual resistance ratios reaching 200. Measurements of resistivity, heat capacity and magnetic susceptibility confirm the intrinsic and bulk character of the superconductivity, which is also argued to be of an unconventional nature. In order to test the hypothesis of the nearby QCP, resistance measurements under high pressure of up to 35 kbar have been conducted. Pressure dependence of the critical temperature of the superconductivity has been found to be rather weak. μSR measurements have been performed, but provided limited information due to sample inhomogeneity resulting in a broad distribution of the critical temperature. While the superconductivity is the result of an effective attraction between electrons, under different circumstances the electronic properties of a system can instead be dictated by the Coulomb repulsion. This is the case for another transition metal based compound NiS$_{2}$, which is a Mott insulator. Applying hydrostatic pressure of about 30 kbar brings the material across the Mott metal-insulator transition (MIT) into the metallic phase. We have used the tunnel diode oscillator (TDO) technique to measure quantum oscillations in the metallised state of NiS$_{2}$, making it possible to track the evolution of the principal Fermi surface and the associated effective mass as a function of pressure. New results are presented which access a wider pressure range than previous studies and provide strong evidence that the effective carrier mass diverges close to the Mott MIT, as expected within the Brinkman-Rice scenario and predicted in dynamical mean field theory calculations. Quantum oscillations have been measured at pressures as close to the insulating phase as 33 kbar and as high as 97 kbar. In addition to providing a valuable insight into the mechanism of the Mott MIT, this study has also demonstrated the potential of the TDO technique for studying materials at high pressures.

Page generated in 0.0543 seconds