Spelling suggestions: "subject:"direct driven hydraulic""
1 |
A Thermal Analysis of Direct Driven HydraulicsMinav, Tatiana, Papini, Luca, Pietola, Matti 02 May 2016 (has links) (PDF)
This paper focuses on thermal analysis of a direct driven hydraulic setup (DDH). DDH combines the benefits of electric with hydraulic technology in compact package with high power density, high performance and good controllability. DDH enables for reduction of parasitic losses for better fuel efficiency and lower operating costs. This one-piece housing design delivers system simplicity and lowers both installation and maintenance costs. Advantages of the presented architecture are the reduced hydraulic tubing and the amount of potential leakage points. The prediction of the thermal behavior and its management represents an open challenge for the system as temperature is a determinant parameter in terms of performance, lifespan and safety. Therefore, the electro-hydraulic model of a DDH involving a variable motor speed, fixed-displacement internal gear pump/motors was developed at system level for thermal analysis. In addition, a generic model was proposed for the electric machine, energy losses dependent on velocity, torque and temperature was validated by measurements under various operative conditions. Results of model investigation predict ricing of temperature during lifting cycle, and flattened during lowering in pimp/motor. Conclusions are drawn concerning the DDH thermal behavior.
|
2 |
Series Hybrid Mining Loader with Zonal HydraulicsMinav, Tatiana, Pietola, Matti, Lehmuspelto, Teemu, Sainio, Panu 03 May 2016 (has links) (PDF)
Presently, there is a four-year window to prepare engines for upcoming TIER V regulations through solutions for peak power shaving and downsizing of diesel engines. In particular, Non-road mobile machinery(NRMM) offer a promising and challenging field of application due to their duty cycles, which includes high and short power peaks and extreme working conditions. In this paper, a series hybrid electric powertrain for a mining loader is presented with the goal of reducing the fuel consumption. A full-scale mining loader powertrain prototype was built to exploit the benefits of a series hybrid electric powertrain at low traction requirements with a combination of decentralized e.g. zonal hydraulics. Corespondingly, this paper introduces the structure of the mining loader and initial mathematical model of the system of a Direct Driven hydraulics (DDH). In this research, an experimental test was conducted, and the initial results are presented in this paper.
|
3 |
Series Hybrid Mining Loader with Zonal HydraulicsMinav, Tatiana, Pietola, Matti, Lehmuspelto, Teemu, Sainio, Panu January 2016 (has links)
Presently, there is a four-year window to prepare engines for upcoming TIER V regulations through solutions for peak power shaving and downsizing of diesel engines. In particular, Non-road mobile machinery(NRMM) offer a promising and challenging field of application due to their duty cycles, which includes high and short power peaks and extreme working conditions. In this paper, a series hybrid electric powertrain for a mining loader is presented with the goal of reducing the fuel consumption. A full-scale mining loader powertrain prototype was built to exploit the benefits of a series hybrid electric powertrain at low traction requirements with a combination of decentralized e.g. zonal hydraulics. Corespondingly, this paper introduces the structure of the mining loader and initial mathematical model of the system of a Direct Driven hydraulics (DDH). In this research, an experimental test was conducted, and the initial results are presented in this paper.
|
4 |
A Thermal Analysis of Direct Driven HydraulicsMinav, Tatiana, Papini, Luca, Pietola, Matti January 2016 (has links)
This paper focuses on thermal analysis of a direct driven hydraulic setup (DDH). DDH combines the benefits of electric with hydraulic technology in compact package with high power density, high performance and good controllability. DDH enables for reduction of parasitic losses for better fuel efficiency and lower operating costs. This one-piece housing design delivers system simplicity and lowers both installation and maintenance costs. Advantages of the presented architecture are the reduced hydraulic tubing and the amount of potential leakage points. The prediction of the thermal behavior and its management represents an open challenge for the system as temperature is a determinant parameter in terms of performance, lifespan and safety. Therefore, the electro-hydraulic model of a DDH involving a variable motor speed, fixed-displacement internal gear pump/motors was developed at system level for thermal analysis. In addition, a generic model was proposed for the electric machine, energy losses dependent on velocity, torque and temperature was validated by measurements under various operative conditions. Results of model investigation predict ricing of temperature during lifting cycle, and flattened during lowering in pimp/motor. Conclusions are drawn concerning the DDH thermal behavior.
|
5 |
Analysis of novel zonal two-cylinder actuation system for heavy loadsMinav, Tatiana, Heikkinen, Jani, Pyne, Soumadipta, Haikio, Sami, Nykanen, Juha, Pietola, Matti 23 June 2020 (has links)
Climate change and economic opportunities motivate investigating electric distributed power for working hydraulics in non-road mobile machinery (NRMM) instead of conventional hydraulics. This recent method allows significant energy savings in hydraulic systems, which was demonstrated previously by many independent studies. In this study, zonal hydraulics (as electrically distributed) are realized with direct driven hydraulics drive (DDH) units. Unlike conventional hydraulic drives the DDH units are disconnected from the engine (main prime mover) and distributed throughout the system. In a DDH unit, a single fixed displacement pump/motor with a speed-controlled electric servomotor directly controls the flow. The aim of this paper is to determine functionality of this new two-cylinder DDH-system in a lifting work cycle (or a swerve motion of the work machine). For this purpose, a model was created to investigate performance of the new test rig Dolores. The results of the simulation model will be utilized in future research to discover and compare other alternatives for working hydraulics architectures.
|
6 |
Electrification of hydraulic systems using highefficiency permament magnet motorsPalavicino, Pablo Castro, Sarlioglu, Bulent, Bobba, Dheeraj, Lee, Woongkul, Minav, Tatiana 25 June 2020 (has links)
In this paper, electrification of hydraulic systems is proposed using high-efficiency permanent magnet (PM) motors and wide bandgap power electronic drives. Direct driven hydraulics (DDH) is selected because of its higher efficiency compared to other conventional technologies such as valve-controlled systems. The DDH is directly driven by a servomotor. The ratings and design guidelines for a servomotor used in DDH applications are provided in this paper. Specifically, a surface permanent magnet synchronous machine (SPMSM) is designed. Finally, a state-of-the-art inverter using silicon carbide wide bandgap devices are designed for high performance operation.
|
Page generated in 0.0844 seconds